Abstract:
A light emitting device including a first electrode and a second electrode facing each other, a quantum dot emission film disposed between the first electrode and the second electrode, and a charge auxiliary layer disposed between the emission film and the first electrode, between the emission film and the second electrode, or between the emission film and the first electrode and between the emission film and the second electrode, wherein the quantum dot emission film includes a first surface facing the charge auxiliary layer and an opposite second surface. A manufacturing method of making the light emitting device, and a display device including the same.
Abstract:
A method of manufacturing a light emitting device that includes providing a first electrode, forming a light emitting layer including quantum dots on the first electrode, forming an electron auxiliary layer on the light emitting layer, and forming a second electrode on the electronic auxiliary layer. The forming of the electron auxiliary layer includes forming an electron auxiliary layer including a plurality of metal oxide nanoparticles, and contacting the plurality of metal oxide nanoparticles with a base including a hydroxyl group (OH).
Abstract:
A light emitting device includes: a first electrode and a second electrode facing each other, an emissive layer disposed between the first electrode and the second electrode and including a quantum dot, an electron auxiliary layer disposed between the emissive layer and the second electrode and including a plurality of nanoparticles, and a polymer layer between a portion of the second electrode and the electron auxiliary layer, wherein the nanoparticles include a metal oxide including zinc, wherein the second electrode has a first surface facing a surface of the electron auxiliary layer and a second surface opposite to the first surface, and the polymer layer is disposed on a portion of the second surface and a portion of the surface of the electron auxiliary layer, and wherein the polymer layer includes a polymerization product of a thiol compound and an unsaturated compound having at least two carbon-carbon unsaturated bonds.
Abstract:
A barrier film comprising: a substrate; a first layer disposed on the substrate and comprising an oxidation product of polysilazane; and a second layer disposed directly on the first layer and comprising a thiol-ene polymer, wherein the polysilazane comprises a repeating unit represented by Chemical Formula 1, wherein R1 and R2 are each independently hydrogen, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkylsilyl group, an alkylamino group, an alkoxy group, or an aromatic hydrocarbon group, and wherein the thiol-ene polymer is a polymerization product of a monomer combination including a first monomer having at least two thiol groups at its terminal end and a second monomer having at least two carbon-carbon unsaturated bond-containing groups at its terminal end.
Abstract:
A quantum dot, and a light emitting device including the same is provided. The quantum dot includes a semiconductor nanocrystal and an organic ligand bound to the surface of the semiconductor nanocrystal, wherein the organic ligand includes a first ligand derived from a first thiol compound including a C12 or more aliphatic hydrocarbon group, and a second ligand derived from a second thiol compound including a C8 or less aliphatic hydrocarbon group.
Abstract:
A layered structure having a first layer including a polymerization product of a monomer combination including a first monomer having at least two thiol groups at its terminal end and a second monomer having at least two carbon-carbon unsaturated bond-containing groups at its terminal end, wherein the first monomer includes a first thiol compound represented by Chemical Formula 1-1 including a thioglycolate moiety and a second thiol represented by Chemical Formula 1-2, and wherein the second monomer includes an ene compound represented by Chemical Formula 2: wherein in Chemical Formulae 1-1, 1-2, and 2, groups and variables are the same as described in the specification.
Abstract:
A light source includes a light emitting element and a light conversion layer configured to convert light emitted from the light emitting element into white light; wherein the light conversion layer includes a matrix resin and a quantum dot, wherein the white light includes a red light component, a green light component, and a blue light component each having a color purity configured to display a color gamut having a concordance rate of greater than or equal to about 99.0% with an Adobe RGB color gamut of a display device, and wherein the green light component has a peak wavelength of about 525 nanometers to about 528 nanometers and a full width at half maximum of less than or equal to about 40 nanometers, and a red light component having a peak wavelength of about 625 nanometers to about 645 nanometers.
Abstract:
A light emitting diode (LED) package includes: an LED; a stack structure including a light-scattering structure spaced apart from the LED, and a light conversion layer disposed on at least one surface selected from an inner surface and an outer surface of the light-scattering structure and configured to convert light emitted from the LED into white light, wherein the light conversion layer includes a semiconductor nanocrystal; and an organic barrier layer disposed on a surface of the light conversion layer.
Abstract:
A photoluminescent layered composite includes: a light conversion layer including a first polymer matrix and a plurality of semiconductor nanocrystals dispersed in the first polymer matrix; and a metal oxide layer, wherein the metal oxide layer includes a plurality of conductive metal oxide particles, and wherein the metal oxide layer is disposed on at least one surface of the light conversion layer. Also a backlight unit and a display device include the same.
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1