Abstract:
Accordingly embodiments herein disclose a method for producing 360 degree image content on a rectangular projection. The method includes detecting whether at least one discontinuous boundary is present in the 360-degree image content, wherein the at least one discontinuous boundary is detected using the packing of one or more projection segments. Further, the method includes obtaining one or more reconstructed blocks from the 360-degree image content. The reconstructed blocks are generated from the 360 degree image content. Further, the method includes performing one of enabling at least one in-loop filtering function on the one or more reconstructed blocks of the 360 degree image content when the at least one of image content discontinuous boundary is not present and disabling at least one in-loop filtering function on the one or more reconstructed blocks of the 360 degree image content located around the at least one discontinuous boundary.
Abstract:
Provided are an inter prediction method and a motion compensation method. The inter prediction method includes: performing inter prediction on a current image by using a long-term reference image stored in a decoded picture buffer; determining residual data and a motion vector of the current image generated via the inter prediction; and determining least significant bit (LSB) information as a long-term reference index indicating the long-term reference image by dividing picture order count (POC) information of the long-term reference image into most significant bit (MSB) information and the LSB information.
Abstract:
Provided is an image processing method including: acquiring images captured in at least two directions; generating a projection image by projecting the images onto a polyhedron; moving a location of at least one pixel among pixels in the projection image to reshape the projection image into a rectangular image; and processing the rectangular image.
Abstract:
Provided are methods and apparatuses for encoding and decoding an image. The method of encoding includes: determining a maximum size of a buffer to decode each image frame by a decoder, a number of image frames to be reordered, and latency information of an image frame having a largest difference between an encoding order and a display order from among image frames that form an image sequence, based on an encoding order the image frames that form the image sequence, an encoding order of reference frames referred to by the image frames, a display order of the image frames, and a display order of the reference frames; and adding, to a mandatory sequence parameter set, a first syntax indicating the maximum size of the buffer, a second syntax indicating the number of image frames to be reordered, and a third syntax indicating the latency information.
Abstract:
Provided is a method of configuring a home screen. The method includes configuring, at a first device, a home screen of a second device, and transmitting, from the first device, information about the home screen to the second device, wherein the home screen includes a graphical user interface (GUI) to be displayed by the second device.
Abstract:
Provided are methods and apparatuses for encoding and decoding an image. The method of encoding includes: determining a maximum size of a buffer to decode each image frame by a decoder, a number of image frames to be reordered, and latency information of an image frame having a largest difference between an encoding order and a display order from among image frames that form an image sequence, based on an encoding order the image frames that form the image sequence, an encoding order of reference frames referred to by the image frames, a display order of the image frames, and a display order of the reference frames; and adding, to a mandatory sequence parameter set, a first syntax indicating the maximum size of the buffer, a second syntax indicating the number of image frames to be reordered, and a third syntax indicating the latency information.
Abstract:
Provided is a prediction image generating technology using a deep neural network (DNN). Provided is an image decoding method including: receiving a bitstream of an encoded image; determining at least one block split from the encoded image; determining neighboring blocks for predicting a current block among the at least one block; generating prediction data of the current block by applying the neighboring blocks to a DNN learning model configured to predict a block of an image by using at least one computer; extracting residual data of the current block from the bitstream; and reconstructing the current block by using the prediction data and the residual data.
Abstract:
Provided are an image compressing method including determining a compressed image by performing downsampling using a deep neural network (DNN) on an image; determining a prediction signal by performing prediction based on the compressed image; determining a residual signal based on the compressed image and the prediction signal; and generating a bitstream comprising information about the residual signal, wherein the DNN has a network structure that is predetermined according to training of a downsampling process using information generated in an upsampling process, and an image compressing device for performing the image compressing method. Also, provided are an image reconstructing method of reconstructing a compressed image by using a DNN for upsampling, the compressed image having been compressed by the image compressing method, and an image reconstructing device for performing the image reconstructing method.
Abstract:
Provided is a method, performed by a terminal, of providing content includes determining whether at least one content is included in preference content, based on information about the at least one content provided to the terminal and preference information of a user of the terminal about content; content, which is not included in the preference content, is present in the at least one content, transmitting, to a server, a request to change the first content to second content included in the preference content based on previously stored information about the preference content; and outputting the second content received from the server, in response to the request.
Abstract:
Provided is a video encoding method including obtaining a projected image by projecting a three-dimensional image onto a polyhedron; generating a rectangular image including a first pixel region and a second pixel region, the first pixel region corresponding to the projected image; selecting a block including at least one pixel included in the first pixel region and at least one pixel included in the second pixel region, the block being from among blocks split from the rectangular image and each block having a predetermined size; substituting a pixel value of the at least one pixel included in the second pixel region included in the selected block with a predetermined value; and encoding the selected block.