Abstract:
A wireless power transmitting device for wirelessly transmitting power to an electronic device is provided. The wireless power transmitting device includes a first coil configured to have a first number of windings and to receive power to be transmitted to the electronic device, thereby generating a magnetic field; and a second coil configured to have a second number of windings, which is different from the first number of windings, wherein an induced electromotive force generated, based on the magnetic field generated from the first coil, in the second coil is used for operation of at least one hardware component of the wireless power transmitting device, and wherein a ratio of a voltage applied to the first coil to a voltage applied to the second coil is determined by a ratio of the first number of windings to the second number of windings.
Abstract:
A terminal device controlling method that provides a haptic effect using a haptic engine is provided, which includes sensing a haptic event, executing a non-physical parameter-based haptic function in a haptic engine so as to determine a vibration pattern corresponding to the haptic event, transferring the vibration pattern from the haptic engine to a device driver, and driving, through the device driver, a vibrator based on the vibration pattern so as to embody a haptic effect.
Abstract:
An actuator using an electro-active polymer is provided. The actuator includes a vibration plate fixed to an electronic device; at least one electro-active polymer attached to the vibration plate, and activated when electric voltage is applied thereto; and at least one mass joined to at least one a combination member disposed on the vibration plate.
Abstract:
A wireless power transmitting device for wirelessly transmitting power to an electronic device is provided. The wireless power transmitting device includes a first coil configured to have a first number of windings and to receive power to be transmitted to the electronic device, thereby generating a magnetic field; and a second coil configured to have a second number of windings, which is different from the first number of windings, wherein an induced electromotive force generated, based on the magnetic field generated from the first coil, in the second coil is used for operation of at least one hardware component of the wireless power transmitting device, and wherein a ratio of a voltage applied to the first coil to a voltage applied to the second coil is determined by a ratio of the first number of windings to the second number of windings.
Abstract:
An electronic device for charging a battery is provided. The electronic device includes a first path configured to receive a first power of a first voltage from an adapter, a second path configured to receive a second power of a second voltage from the adapter, a charger, connected to the first path, configured to receive the first power, adjust at least one of a voltage or a current of the first power, and provide the adjusted first power to the battery; and a processor configured to control to connect the second path to the battery during fast charging to directly connect the battery to the adapter.
Abstract:
An electronic device and method for wirelessly receiving power are provided. The electronic device includes a wired power interface; a power receiving circuit; and a control circuit configured to control the power receiving circuit to wirelessly receive power from a wireless power transmitting device; and provide the received power to an external electronic device through the wired power interface.
Abstract:
A wireless power transmitter is provided. The wireless power transmitter includes a power supply unit that supplies Alternating Current (AC) power having a predetermined voltage value, a rectification unit that is connected to the power supply unit, and rectifies the AC power, a voltage adjustment unit that is connected to the rectification unit, and adjusts a magnitude of an output voltage value of the rectified power, and outputs the adjusted power to a power transmission unit, the power transmission unit that generates the adjusted power output from the voltage adjustment unit as a signal in a form in which wireless power transmission is possible, and transmits the generated signal to a wireless power receiver, and a control unit that controls the magnitude of the output voltage value of the rectified power to be adjusted by the voltage adjustment unit in accordance with a predetermined criterion.
Abstract:
A coordinate indicating device which inputs coordinates to a coordinate measuring device is provided. The coordinate indicating device includes a power receiver for wirelessly receiving drive power from the coordinate measuring device, a rectifier for rectifying the wirelessly received drive power into Direct Current (DC) drive power, a battery for storing the rectified drive power, an actuator for outputting at least one of preset vibration, frictional force, and electrostatic force, based on relative positions of the coordinate measuring device and the coordinate indicating device by using the rectified drive power provided from the battery, a coordinate indicator for indicating coordinates at predetermined coordinates on the coordinate measuring device, and a shielding portion for shielding the coordinate indicator.
Abstract:
A sealing apparatus of a touch panel provided in a portable terminal including a body and the touch panel, wherein the sealing apparatus is attached and coupled to a coupling area between the body and the touch panel to seal the coupling area while the touch panel is suspended over the body by a resilient member.