Abstract:
A method of operating a system including a parameter monitoring circuit and a host, includes generating a first parameter applying a first code to a current parameter, wherein a first offset is applied to the first code; generating a first comparison result by comparing the first parameter with a reference parameter value; generating a second parameter applying a second code to the current parameter, wherein a second offset is applied to the second code; generating a second comparison result by comparing the second parameter with the reference parameter value; detecting an error in the current parameter, based on the first comparison result and the second comparison result; and providing a signal based on the error to the host.
Abstract:
A parameter monitoring circuit includes a code generation circuit configured to generate a first code, to which a first offset is applied, and a second code, to which a second offset is applied; a parameter adjustment circuit configured to generate a first parameter and a second parameter by respectively applying the first code and the second code to a current parameter; a comparator circuit configured to generate a first comparison result and a second comparison result, the first comparison result indicating a comparison result between the first parameter and a reference parameter value, and the second comparison result indicating a comparison result between the second parameter and the reference parameter value; and a parameter error detection circuit configured to detect an error in the current parameter, based on the first comparison result and the second comparison result.
Abstract:
A multi-chip package with reduced calibration time and an impedance control (ZQ) calibration method thereof are provided. A master chip of the multi-chip package performs a first ZQ calibration operation by using a ZQ resistor, and then, the other slave chips simultaneously perform second ZQ calibration operations with respect to data input/output (DQ) pads of the slave chips by using a termination resistance value of a DQ pad of the master chip on the basis of a one-to-one correspondence relationship with the DQ pad of the master chip. The multi-chip package completes ZQ calibration by performing two ZQ calibration operations, thereby decreasing a ZQ calibration time.
Abstract:
An integrated circuit including first pads and second pads, a first receiver circuit and a first driver circuit respectively connected to the first pad, a second receiver circuit and a second driver circuit respectively connected to the second pad, and a first loopback circuit having a first input terminal electrically connected to the first receiver circuit, a first output terminal electrically connected to the first driver circuit, a second output terminal electrically connected to the second driver circuit, and a second input terminal electrically connected to the second receiver circuit may be provided. At a normal mode, the first loopback circuit electrically connects the first input terminal to the second output terminal and electrically connects the second input terminal to the first output terminal. At a test mode, the first loopback circuit electrically connects the first input terminal to the first output terminal.
Abstract:
A memory system includes a memory device including a plurality of non-volatile memories and an interface circuit connected to each of the plurality of non-volatile memories, and a memory controller connected to the interface circuit and configured to transmit/receive data according to a first clock, wherein the interface circuit is configured to divide the first clock into a second clock, according to the number of the plurality of non-volatile memories, and transmit/receive data to/from each of the plurality of non-volatile memories, according to the second clock.
Abstract:
An interface circuit of a memory device including a plurality of memory dies including a plurality of registers corresponding to the plurality of memory dies, respectively, the plurality of registers each configured to store command information related to a data operation command, a demultiplexer circuit configured to provide input command information to a selected register from among the plurality of registers according to at least one of a first address or a first chip selection signal, the input command information being received from outside the interface circuit, and a multiplexer circuit configured to receive output command information from the selected register from among the plurality of registers and output the output command information according to at least one of a second address or a second chip selection signal may be provided.
Abstract:
A memory device includes a memory cell array configured to store data; and a data output circuit configured to transmit status data to an external device through at least one data line in a latency period in response to a read enable signal received from the external device and transmit the data read from the memory cell array to the external device through the at least one data line in a period subsequent to the latency period.
Abstract:
A memory system includes a memory device including a plurality of non-volatile memories and an interface circuit connected to each of the plurality of non-volatile memories, and a memory controller connected to the interface circuit and configured to transmit/receive data according to a first clock, wherein the interface circuit is configured to divide the first clock into a second clock, according to the number of the plurality of non-volatile memories, and transmit/receive data to/from each of the plurality of non-volatile memories, according to the second clock.
Abstract:
An interface circuit of a memory device including a plurality of memory dies including a plurality of registers corresponding to the plurality of memory dies, respectively, the plurality of registers each configured to store command information related to a data operation command, a demultiplexer circuit configured to provide input command information to a selected register from among the plurality of registers according to at least one of a first address or a first chip selection signal, the input command information being received from outside the interface circuit, and a multiplexer circuit configured to receive output command information from the selected register from among the plurality of registers and output the output command information according to at least one of a second address or a second chip selection signal may be provided.
Abstract:
A memory system may include a nonvolatile memory device and a controller. The nonvolatile memory device may include a data area and a device information area, the device information area being inaccessible accessed by a host. The controller may be configured to perform the training operation with respect to a data signal transmitted to or received from the nonvolatile memory device based on training information stored in the device information area. The controller may be configured to select one of a first training operation and a second training operation based on an identification code of the training information, and to perform the selected one of the first training operation based on a rooted training code generated by the controller and the second training operation based on a dynamic training code of the training information, the second training operation including performing a fewer number of searches than the first training operation.