Abstract:
A ceramic electronic component includes a pair of electrodes facing each other and a dielectric layer disposed between the pair of electrodes and including a plurality of ceramic nanosheets, where the plurality of ceramic nanosheets has a multimodal lateral size distribution expressed by at least two separated peaks, a method of manufacturing the same, and an electronic device including the ceramic electronic component.
Abstract:
A separation membrane including: an alloy including a Group 5 element, Fe, and Al, wherein the alloy includes a body-centered cubic lattice structure.
Abstract:
An electrode structure includes: a first nonconductive layer; a first conductive layer disposed on the first nonconductive layer; a second nonconductive layer disposed on the first conductive layer; a second conductive layer disposed on the second nonconductive layer; and a third nonconductive layer disposed on the second conductive layer, where at least one of the first conductive layer and the second conductive layer includes a two-dimensional conductive material.
Abstract:
A method of manufacturing a ceramic dielectric, including: heat-treating a barium precursor or a strontium precursor, a titanium precursor, and a donor element precursor to obtain a conducting or semiconducting oxide, preparing a mixture including the conducting or semiconducting oxide and a liquid-phase acceptor element precursor, and sintering the mixture to form a ceramic dielectric, wherein the ceramic dielectric includes a plurality of grains and a grain boundary between adjacent grains, and wherein the plurality of grains including an insulating oxide comprising an acceptor element derived from the acceptor element precursor.
Abstract:
Disclosed are a separation membrane including a Group 5-based alloy, wherein crystal particles in the alloy have an average minor axis length of about 3 μm to about 10 μm and an aspect ratio of about 1:8 to 1:20, wherein the alloy is represented by the following Chemical Formula 1, and a method of manufacturing the same. AxByCz (Chemical Formula 1) In Chemical Formula 1, A is vanadium, niobium, or tantalum, B and C are same or different and are independently selected from nickel (Ni), aluminum (Al), iron (Fe), cobalt (Co), manganese (Mn), iridium (Ir), palladium (Pd), and platinum (Pt), x is a real number of greater than or equal to about 0.8 and less than 1, y+z=1−x, and y and z are independently real numbers of greater than or equal to about 0.
Abstract:
A transparent electrode includes a substrate; a first layer disposed on the substrate, the first layer including a graphene mesh structure, the graphene mesh structure including graphene and a plurality of holes; and a second layer disposed on the first layer, wherein the second layer includes a plurality of conductive nanowires.
Abstract:
Disclosed are a composite transparent electrode, a production method thereof, and an electronic device including the same, wherein the composite transparent electrode includes a metal nitride thin film including at least one of indium (In), titanium (Ti), zinc (Zn), zirconium (Zr), and gallium (Ga), and a metal oxide thin film including at least one of indium (In), zinc (Zn), tin (Sn), and titanium (Ti), the metal oxide thin film being formed on one surface or opposite surfaces of the metal nitride thin film.
Abstract:
A hafnium telluride compound includes a layered crystal structure and represented by the following Chemical Formula 1. Hf3Te2-xAx [Chemical Formula 1] Herein, A is at least one selected from phosphorus (P), Arsenic (As), antimony (Sb), bismuth (Bi), sulfur (S) and selenium (Se), and 0
Abstract:
A hydrogen separation membrane including: a metal layer including the at least one Group 5 element; and a transition metal catalyst layer on the metal layer, the transition metal catalyst layer including at least one transition metal and at least one of phosphorus (P) or boron (B).
Abstract:
A transparent electrode including: a first layer including a thermosetting copolymer including a first repeating unit having an aromatic moiety as a pendant group or incorporated in a backbone of the copolymer and a second repeating unit capable of lowering a curing temperature, a combination of a first polymer including the first repeating unit and a second polymer including the second repeating unit, or a combination thereof; a second layer disposed directly on one side of the first layer, wherein the second layer includes graphene; and a third layer disposed on the second layer, wherein the third layer includes an electrically conductive metal nanowire.