Abstract:
A display device includes a display area including a first light-emitting area and a second light-emitting area; a peripheral area adjacent to the display area; pixels which emit incident light; an encapsulation layer covering the pixels; a first color-converting pattern corresponding to the first light-emitting area and having a refractivity; a transmission pattern corresponding to the second light-emitting area and through which the incident light is transmitted; a low refractivity layer is in the display area and facing the encapsulation layer with each of the first color-converting pattern and the transmission pattern therebetween, the low refractivity layer including: a resin and a hollow particle which define a refractivity lower than the refractivity of the first color-converting pattern; and a first dam structure in the peripheral area and spaced apart from the display area, the first dam structure and the transmission pattern being portions of a same material layer.
Abstract:
A liquid crystal display device comprises: a first substrate; an organic layer disposed on the first substrate; a pixel electrode disposed on the organic layer; a plurality of slits defined in the pixel electrode and configured to exposed a surface of the organic layer; a liquid crystal alignment film disposed on a surface of the pixel electrode and on the surface of the organic layer exposed by the plurality of slits; and a plurality of liquid crystal molecules disposed on the liquid crystal alignment film, wherein the liquid crystal alignment film includes a first region overlapping the plurality of slits and a second region overlapping the pixel electrode, wherein the second region has a surface energy different from a surface energy of the first region.
Abstract:
A liquid crystal display (LCD) includes: a first pixel configured to emit first light having a first wavelength; a second pixel configured to emit second light having a second wavelength longer than the first wavelength; a third pixel configured to emit third light having a third wavelength longer than the second wavelength; and a liquid crystal (LC) panel in which driving voltages for maximum transmittances for the first light, the second light, and the third light are different from each other. The LCD is configured to apply different voltages to pixel electrodes of the first pixel, the second pixel, and the third pixel, respectively, such that the first light, the second light, and the third light respectively emitted by the first pixel, the second pixel, and the third pixel are transmitted at the respective maximum transmittances.
Abstract:
A liquid crystal composition includes a first class including a first compound represented by Chemical Formula 1, wherein the first compound is 13 to 18 parts by weight based on 100 parts by weight of the total liquid crystal composition, and a second compound represented by Chemical Formula 2, wherein the second compound is 8 to 13 parts by weight based on 100 parts by weight of the total liquid crystal composition, a second class including a third compound represented by Chemical Formula 3. Chemical Formulas 1, 2, and 3 are represented by: and wherein R and R′ are, independently of each other, a hydrogen atom, or an unsubstituted or substituted C1 to C7 alkyl group.
Abstract:
A liquid crystal display device is provided. The liquid crystal display device includes a first substrate and a pixel electrode disposed on the first substrate, the pixel electrode including a cross stem and a plurality of minute branches extending from the cross stem. The cross stem includes a horizontal stem and a vertical stem crossing the horizontal stem. The liquid crystal display device further includes a second substrate facing the first substrate, a common electrode disposed on the second substrate, and a liquid crystal layer including liquid crystal molecules interposed between the first substrate and the second substrate. Each of the minute branches includes a first side forming an angle of about 45° with the horizontal stem and a second side forming an angle of less than about 45° with the horizontal stem.
Abstract:
A display device includes a bank including an opening defining a plurality of pixels; a plurality of light emitting elements disposed in the plurality of pixels; a color conversion layer disposed on the plurality of light emitting elements in the opening; and a low refractive layer disposed on the color conversion layer in the opening.
Abstract:
A display panel includes a support substrate including a display area having a plurality of pixel areas and a non-display area disposed around the display area. An encapsulation substrate faces a first side of the support substrate. An emitting array is disposed on the first side of the support substrate. A phase adjusting layer is disposed on the emitting array and changes a phase of light. A reflected light absorbing layer is disposed on the phase adjusting layer and absorbs at least a portion of light reflected from the emitting array. A sealing layer is disposed in the non-display area between the support substrate and the encapsulation substrate. A black matrix layer is disposed on a first side of the encapsulation substrate and corresponds to boundaries between the plurality of pixel areas.
Abstract:
A display device includes a substrate. The substrate includes a display area and a non-display area, and the display area includes an emission area and a non-emission area. A display element layer includes a light emitting element on the emission area of the substrate. A bank is on the display element layer and overlaps the non-display area and the non-emission area of the substrate in a plan view. A color conversion layer is on the display element layer, overlaps the emission area in the plan view, and is to convert a color of light emitted from the light emitting element. An organic insulating layer is on the color conversion layer and the bank. A maximum thickness of the bank is about 4 μm to about 20 μm. An average inclination angle of a first side surface of the bank adjacent to an edge of the substrate in the non-display area based on an upper surface of the substrate is less than or equal to about 45 degrees.
Abstract:
A display device includes: a substrate; a first electrode on the substrate; a bank layer on the first electrode; an organic light-emitting layer on the first electrode; a second electrode on the organic light-emitting layer and the bank layer; a high-refractive lens on the second electrode and having a refractive index higher than a refractive index of a material that overlaps the first electrode and contacts a side surface of the high-refractive lens; a display panel including an encapsulation member that is on the high-refractive lens; and an optical path adjustment film on the display panel. The optical path adjustment film includes a plurality of protruding patterns on the encapsulation member and a cover layer in spaces between adjacent protruding patterns from among the plurality of protruding patterns. A refractive index of each of the protruding patterns is smaller than a refractive index of the cover layer.
Abstract:
An optical film for a display device, includes: a first refractive layer having an upper surface and a lower surface including first projections and second projections extending away from the lower surface in a first direction, the second projections having different heights than the first projections, the first projections having lateral sides with different angles of inclination that decrease in the first direction; and a second refractive layer disposed directly on the upper surface of the first refractive layer, the second refractive layer having a refractive index different from that of the first refractive layer.