Abstract:
An organic light emitting display apparatus that includes a substrate, an organic light emitting unit formed on the substrate, a reflection member disposed on a non-light emitting region of the organic light emitting unit, and a sealing member that seals the organic light emitting unit. The organic light emitting display apparatus can function as a display apparatus or a mirror.
Abstract:
An organic light emitting diode display includes a substrate including a thin film transistor, a plurality of pixels on a pixel area of the substrate, a plurality of auxiliary electrodes between the pixels, an opposite electrode on the pixels and on the auxiliary electrodes, the opposite electrode being electrically connected to the auxiliary electrodes, and including a same material as the auxiliary electrodes, and a power supply electrode on the substrate, the power supply electrode being in a periphery of the pixel area and being configured to supply power to the pixels.
Abstract:
An organic layer deposition apparatus capable of protecting or preventing a patterning slit sheet from sagging, and a frame sheet assembly for the organic layer deposition apparatus.
Abstract:
An organic light emitting display apparatus that includes a substrate, an organic light emitting unit formed on the substrate, a reflection member disposed on a non-light emitting region of the organic light emitting unit, and a sealing member that seals the organic light emitting unit. The organic light emitting display apparatus can function as a display apparatus or a mirror.
Abstract:
A method for manufacturing an organic light emitting display apparatus includes forming a layer by depositing on a substrate a deposition material emitted from a deposition assembly while conveying the substrate with respect to the deposition assembly. In the forming of the layer, at least two layers of a first layer including a deposition material emitted from a first deposition source, a second layer including deposition materials emitted from the first deposition source and a second deposition source, and a third layer including a deposition material emitted from the second deposition source, are deposited on the substrate by using an angle restriction unit.
Abstract:
A patterning slit sheet assembly for performing a deposition process to form a thin film on a substrate in a desired fine pattern. The patterning slit sheet assembly includes a patterning slit sheet having a plurality of slits, a frame combined with the patterning slit sheet to support the patterning slit sheet, and a support unit including an upper member that is allowed to be moved or fixed to support the patterning slit sheet when a gravitational force is applied to the patterning slit sheet and a lower member disposed more apart from the patterning slit sheet than the upper member, wherein the upper member is fixed on the lower member.
Abstract:
An organic layer deposition apparatus and a method of manufacturing an organic light-emitting display device by using the apparatus. In particular, an organic layer deposition apparatus that is more easily manufactured and is suitable for use in mass production of large substrates while performing high-definition patterning thereon, as well as a method of manufacturing an organic light-emitting display device by using such an apparatus.
Abstract:
An organic light emitting display apparatus that includes a substrate, an organic light emitting unit formed on the substrate, a reflection member disposed on a non-light emitting region of the organic light emitting unit, and a sealing member that seals the organic light emitting unit. The organic light emitting display apparatus can function as a display apparatus or a mirror.
Abstract:
A deposition source and an organic layer deposition apparatus that may be simply applied to the manufacture of large-sized display apparatuses on a mass scale and may prevent or substantially prevent deposition source nozzles from being blocked during deposition of a deposition material, thereby improving manufacturing yield and deposition efficiency. A deposition source includes a first deposition source including a plurality of first deposition source nozzles, and a second deposition source including a plurality of second deposition source nozzles wherein the plurality of first deposition source nozzles and the plurality of second deposition source nozzles are tilted toward each other.
Abstract:
A method of manufacturing an organic light-emitting display device, wherein a voltage drop of a counter electrode is effectively reduced, includes: (i) forming a layer on a substrate using a first deposition assembly, wherein the first deposition assembly includes a patterning slit sheet that includes patterning slits corresponding to sub-pixels emitting light in a first wavelength band from among n sub-pixels of each of pixels and does not include a patterning slit in regions corresponding to spaces between pixels in a second direction crossing a first direction and parallel to the substrate fixed to a transfer unit; and (ii) forming a layer on the substrate using a second deposition assembly, wherein the second deposition assembly includes a patterning slit sheet that includes patterning slits corresponding to the pixels and does not include a patterning slit in regions corresponding to spaces between the pixels in the second direction.