Abstract:
A thin film deposition apparatus that can be simply applied to produce large-sized display devices on a mass scale and that improves manufacturing yield. The thin film deposition apparatus includes a deposition source that discharges a deposition material; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet disposed opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction. A deposition is performed while the substrate or the thin film deposition apparatus moves relative to each other in the first direction, and the deposition source, the deposition source nozzle unit, and the patterning slit sheet are formed integrally with each other.
Abstract:
An organic layer deposition apparatus, and a method of manufacturing an organic light-emitting display device using the organic layer deposition apparatus. The organic layer deposition apparatus includes: an electrostatic chuck that fixedly supports a substrate that is a deposition target; a deposition unit including a chamber maintained at a vacuum and an organic layer deposition assembly for depositing an organic layer on the substrate fixedly supported by the electrostatic chuck; and a first conveyor unit for moving the electrostatic chuck fixedly supporting the substrate into the deposition unit, wherein the first conveyor unit passes through inside the chamber, and the first conveyor unit includes a guide unit having a receiving member for supporting the electrostatic chuck to be movable in a direction.
Abstract:
A thin film deposition apparatus that can be simply applied to produce large-sized display devices on a mass scale and that improves manufacturing yield. The thin film deposition apparatus includes a deposition source that discharges a deposition material; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet disposed opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction. A deposition is performed while the substrate or the thin film deposition apparatus moves relative to each other in the first direction, and the deposition source, the deposition source nozzle unit, and the patterning slit sheet are formed integrally with each other.
Abstract:
A deposition source and an organic layer deposition apparatus that may be simply applied to the manufacture of large-sized display apparatuses on a mass scale and may prevent or substantially prevent deposition source nozzles from being blocked during deposition of a deposition material, thereby improving manufacturing yield and deposition efficiency. A deposition source includes a first deposition source including a plurality of first deposition source nozzles, and a second deposition source including a plurality of second deposition source nozzles wherein the plurality of first deposition source nozzles and the plurality of second deposition source nozzles are tilted toward each other.
Abstract:
An organic layer deposition apparatus, and a method of manufacturing an organic light-emitting display device using the organic layer deposition apparatus. The organic layer deposition apparatus includes: an electrostatic chuck that fixedly supports a substrate that is a deposition target; a deposition unit including a chamber maintained at a vacuum and an organic layer deposition assembly for depositing an organic layer on the substrate fixedly supported by the electrostatic chuck; and a first conveyor unit for moving the electrostatic chuck fixedly supporting the substrate into the deposition unit, wherein the first conveyor unit passes through inside the chamber, and the first conveyor unit includes a guide unit having a receiving member for supporting the electrostatic chuck to be movable in a direction.
Abstract:
A thin film deposition apparatus that can be simply applied to produce large-sized display devices on a mass scale and that improves manufacturing yield. The thin film deposition apparatus includes a deposition source that discharges a deposition material; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet disposed opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction. A deposition is performed while the substrate or the thin film deposition apparatus moves relative to each other in the first direction, and the deposition source, the deposition source nozzle unit, and the patterning slit sheet are formed integrally with each other.
Abstract:
A deposition source and an organic layer deposition apparatus that may be simply applied to the manufacture of large-sized display apparatuses on a mass scale and may prevent or substantially prevent deposition source nozzles from being blocked during deposition of a deposition material, thereby improving manufacturing yield and deposition efficiency. A deposition source includes a first deposition source including a plurality of first deposition source nozzles, and a second deposition source including a plurality of second deposition source nozzles wherein the plurality of first deposition source nozzles and the plurality of second deposition source nozzles are tilted toward each other.
Abstract:
A method for forming a thin film on a substrate includes discharging a deposition material from a deposition source through a plurality of deposition source nozzles arranged in a first direction on a deposition source nozzle unit disposed at a side of the deposition source; passing the deposition material through a patterning slit sheet; and depositing the deposition material on the substrate, while moving the substrate and the patterning slit sheet relative to each other. The patterning slit sheet is spaced apart from the substrate by a distance. A blocking member is disposed between the substrate and the deposition source and is moved along with the substrate to be positioned to screen at least one portion of the substrate, and the patterning slit sheet is disposed opposite to and spaced apart from the deposition source nozzle unit, and includes a plurality of patterning slits arranged in the first direction.