Abstract:
A display device includes a first base substrate; a liquid crystal layer disposed on the first base substrate; an overcoat layer disposed on the liquid crystal layer and including epoxy polymer; a color conversion layer disposed on the overcoat layer; and a second base substrate disposed on the color conversion layer.The epoxy polymer is a polymer obtained by polymerizing 1 part to 50 parts by weight of a cardo-based binder resin; 1 part to 50 parts by weight of an epoxy-based monomer; and 1 part to 50 parts by weight of a bisphenol-based resin, with respect to 100 parts by weight.
Abstract:
A display device including: a first substrate; first through third subpixel electrodes which are disposed on the first substrate to neighbor each other; a second substrate opposing the first substrate; a first wavelength conversion pattern at least partially overlapping the first subpixel electrode and a second wavelength conversion pattern at least partially overlapping the second subpixel electrode; a first light transmission pattern at least partially overlapping the third subpixel electrode and a second light transmission pattern disposed between the first wavelength conversion pattern and the second wavelength conversion pattern; and a low refractive layer which has a lower refractive index than the first and second wavelength conversion patterns.
Abstract:
Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
Abstract:
A display device includes a first base substrate; a liquid crystal layer disposed on the first base substrate; an overcoat layer disposed on the liquid crystal layer and including epoxy polymer; a color conversion layer disposed on the overcoat layer; and a second base substrate disposed on the color conversion layer. The epoxy polymer is a polymer obtained by polymerizing 1 part to 50 parts by weight of a cardo-based binder resin; 1 part to 50 parts by weight of an epoxy-based monomer; and 1 part to 50 parts by weight of a bisphenol-based resin, with respect to 100 parts by weight.
Abstract:
Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
Abstract:
Provided is a photoalignment film. The photoalignment film may have a fibrous layer that is formed by stacking fibers including a photoalignment material having optical anisotropy in one direction in a state where longitudinal axes of the fibers are arranged in the one direction. The fibrous layer may have a bent surface according to a difference in stacking height between the fibers.