Abstract:
A slot die coater planarizing an upper surface of an encapsulation layer and a coating method using the same. The slot die coater includes a slit nozzle configured to supply a coating solution. The slit nozzle includes a hole vertically penetrating a center portion thereof, a first bottom surface disposed at a movement direction side of the slit nozzle with reference to the hole, and a second bottom surface disposed at an opposite direction side of the movement direction of the slit nozzle with reference to the hole. A width of the first bottom surface is different from the width of the second bottom surface.
Abstract:
The display device includes a substrate including a plurality of pixel areas; and a pixel in each of the plurality of pixel areas. The pixel may include a pixel circuit layer on the substrate and including at least one transistor; a first electrode on the pixel circuit layer and electrically connected to the transistor; a plurality of light emitting elements on the first electrode and electrically connected to the first electrode; a second electrode on the plurality of light emitting elements; and a light blocking pattern on the second electrode and including a plurality of openings corresponding to each of the plurality of light emitting elements. Here, each of the plurality of pixel areas may include an emission area corresponding to each of the plurality of openings and a non-emission area excluding the emission area.
Abstract:
A display device and a method of manufacturing the same are provided. The display device includes a first electrode disposed on a substrate, an adhesive auxiliary layer disposed on the first electrode and including a self-assembled monolayer, a light emitting element disposed on the adhesive auxiliary layer, and a contact electrode disposed between the adhesive auxiliary layer and the light emitting element. The light emitting element includes a first semiconductor layer, a second semiconductor layer disposed on the first semiconductor layer, and an intermediate layer disposed between the first semiconductor layer and the second semiconductor layer.
Abstract:
An exemplary embodiment provides a liquid crystal display including: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer disposed to face the pixel electrode; and a capping layer disposed on the roof layer, wherein a plurality of microcavities are disposed between the pixel electrode and the roof layer, the microcavities form a liquid crystal layer including a liquid crystal material, a liquid crystal injection portion is formed between the microcavities, the capping layer is disposed to cover the liquid crystal injection portion, and the capping layer includes a light-blocking material and a water-soluble polymer material.
Abstract:
An exemplary embodiment of the present inventive concept provides a display device including: an insulation substrate; a thin film transistor disposed on the substrate; a common electrode and a pixel electrode disposed on the thin film transistor to overlap each other with an insulating layer therebetween; a roof layer formed to be spaced apart from the pixel electrode with a microcavity therebetween; and a liquid crystal layer filling the microcavity. A lower portion of the roof layer includes a valley where a thickness of the roof layer is increased and a peak where the thickness of the roof layer is reduced.
Abstract:
Exemplary embodiments of the present disclosure provide a thin film transistor array panel including a first insulating substrate; a gate line and a data line disposed on the first insulating substrate, intersecting with each other, and being insulated from each other; a first passivation layer disposed on the gate line and the data line and comprising a plurality of first openings; a first electrode disposed on the first passivation layer; and a second electrode disposed in the first opening, thereby simplifying a manufacturing process of the thin film transistor array panel.
Abstract:
A liquid crystal display includes a thin film transistor on a substrate, a pixel electrode connected to a first terminal of the thin film transistor, a roof layer above the pixel electrode, a microcavity between the pixel electrode and the roof layer, the microcavity including a liquid crystal injection hole, a partition wall in the microcavity, the partition wall partitioning the microcavity into a first area and a second area, and a liquid crystal layer with liquid crystal molecules in the microcavity, the liquid crystal molecules in the first area being a different type than the liquid crystal molecules in the second area.
Abstract:
A liquid crystal display includes: an insulating substrate; gate lines and data lines disposed on the insulating substrate; pixels disposed on the substrate substantially in a matrix form, each pixel including a thin film transistor connected to a corresponding gate line of the gate lines and a corresponding data line of the data lines, a first electrode disposed on the thin film transistor, and a second electrode disposed on the first electrode; a first insulating layer disposed on the gate lines, the data lines and the thin film transistor, and under the first electrode; and a second insulating layer disposed between the first electrode and the second electrode, in which each of the first insulating layer and the second insulating layer include an inorganic insulating layer, and a thickness of the first insulating layer is greater than a thickness of the second insulating layer.
Abstract:
A display device includes a display panel, a signal controller, sensing signal lines, and a touch sensor controller. The display panel includes pixels configured to display images, and touch sensor electrodes configured to sense a touch event. The touch sensor electrodes overlap a conductive layer. The signal controller is configured to generate signals to control the display of the images via the display panel. The sensing signal lines are respectively connected to the touch sensor electrodes. The touch sensor controller is configured to transmit a sensing input signal via the sensing signal lines, receive a sensing output signal via the sensing signal lines, and generate touch information based on reception of the sensing output signal. The touch sensor controller is configured to apply the same signal to the touch sensor electrodes and the conductive layer.
Abstract:
A display device includes a substrate, and a display element part on the substrate, and including a light emitting element configured to emit light in a display direction, and a bank pattern that protrudes in the display direction, wherein the bank pattern and the light emitting element include a same material.