Abstract:
A display apparatus includes an image analyzer that analyzes image data and outputs an interrupt signal at a period during which the image data of a low frequency change to the image data of a high frequency, a frequency detector that detects the high frequency, a frame rate controller that outputs a vertical synch signal of the high frequency in response to the interrupt signal, a polarity compensation controller that determines a last frame of the low frequency based on an interrupt period at which the interrupt signal is generated, generates a reversed polarity signal with respect to a polarity signal of the last frame and outputs the reversed polarity signal during a polarity compensation period close to the interrupt period, and a data driver circuit that outputs a data signal based on the reversed polarity signal to a data line during the polarity compensation period.
Abstract:
A method of driving a display panel includes generating a first driving period having a first driving frequency, generating a second driving period having a second driving frequency, and inserting a compensating frame between the first driving period and the second driving period. A display apparatus includes a display panel configured to display an image, and a display panel driver configured to generate a first driving period having a first driving frequency, to generate a second driving period having a second driving frequency, and to insert a compensating frame between the first driving period and the second driving period.
Abstract:
An electroluminescent display and a method of driving the same are disclosed. In one aspect, the display includes a display panel including a plurality of pixels configured to operate based on a first power supply voltage having a negative voltage level. The display panel is configured to generate at least one feedback voltage corresponding to an ohmic drop of the first power supply voltage. An analog-to-digital converter is configured to generate at least one digital feedback signal based on the at least one feedback voltage. An adaptive voltage controller is configured to generate a voltage control signal based on input image data, the at least one digital feedback signal, a distribution of the input image data and the ohmic drop of the first power supply voltage. A voltage converter is configured to generate the first power supply voltage based on an input voltage and the voltage control signal.
Abstract:
A method of driving a display panel includes generating a first driving period having a first driving frequency, generating a second driving period having a second driving frequency, and inserting a compensating frame between the first driving period and the second driving period. A display apparatus includes a display panel configured to display an image, and a display panel driver configured to generate a first driving period having a first driving frequency, to generate a second driving period having a second driving frequency, and to insert a compensating frame between the first driving period and the second driving period.
Abstract:
A method of driving an electro-wetting display panel including a pixel part is provided. In the method, data voltages are applied to the electro-wetting display panel during a first time of a frame. The frame has the first time and a second time. The first time has a plurality of horizontal periods. The data voltages are generated based on reference gamma voltages. At least one of reference gamma voltages of one of the horizontal periods is different from another of the reference gamma voltages of another of the horizontal periods. A reset voltage is applied to the electro-wetting display panel during the second time of the frame.
Abstract:
A display device includes a display panel including a plurality of pixels, a scan driving unit configured to provide a scan signal to the pixels, a data driving unit configured to provide a data signal to the pixels, and a controller configured to provide driving frequency information to a processor, which transfers image data with a driving frequency determined based on the driving frequency information to the display device, to receive the image data with the driving frequency from the processor, and to control the scan driving unit and the data driving unit to drive the display panel with the driving frequency.
Abstract:
A data driver including a power control part configured to control power according to mode signal determined based on an input image, a digital to analog converting part configured to convert a digital data signal into an analog data voltage, a buffering part configured to buffer the data voltage, a first switching part configured to apply the data voltage to a data line in a normal mode, when turned on, and a second switching part configured to apply a blank voltage to the data line in a blank period of a low frequency mode, when turned on.
Abstract:
A method of driving a display panel includes dividing an input image into a plurality of segments; generating flicker levels of respective ones of the segments; determining a frame rate of the display panel based on the flicker levels of the segments; and outputting a data voltage to the display panel at the frame rate.
Abstract:
A stage of a gate driver includes a carry generate block configured to output an (N)-th carry signal based on an input signal and to provide the (N)-th carry signal to an (N+1)-th stage; a first output block configured to output an (N)-th gate initialization signal based on the input signal, an input enable signal, and an input disable signal, wherein the input disable signal is inverted with respect to the input enable signal; and a second output block configured to receive the (N)-th gate initialization signal and to output an (N)-th gate signal according to the output of the (N)-th gate initialization signal; the (N)-th gate signal being delayed one horizontal period from the (N)-th gate initialization signal, wherein the gate signals and the gate initialization signals of the stages are selectively output based on the input enable signal and the input disable signal.
Abstract:
A liquid crystal display includes: a display panel including data lines, scan lines and a plurality of pixels connected to the data lines and the scan lines; a scan driver configured to supply scan signals to the scan lines; a data driver configured to supply data voltages to the data lines; and a timing controller configured to control operation timings of the scan driver and the data driver, where the timing controller is configured to output a plurality of scan output enable signals to the scan driver, and the scan driver is configured to supply odd scan signals to odd scan lines based on a first scan output enable signal of the scan output enable signals and to supply even scan signals to even scan lines based on a second scan output enable signal of the scan output enable signals.