Abstract:
An organic light emitting diode display device, including a flexible substrate; pixels on the flexible substrate, the pixels including an organic emission layer; a pixel definition layer between the pixels, the pixel definition layer including openings; an encapsulation layer covering the pixels; and a conductive light shielding member on the encapsulation layer, the conductive light shielding member not overlapped with the pixels, and overlapped with the pixel definition layer.
Abstract:
An organic light emitting display device and a manufacturing method of an organic light emitting display device. An organic light emitting display device includes a substrate; a first electrode on the substrate; an emitting layer on the first electrode; a second electrode on the emitting layer; and a first slit-shaped pattern on the second electrode and including a plurality of first protrusions spaced apart from each other.
Abstract:
A display device includes a first electrode, a second electrode, and a third electrode extending in one direction on a substrate and being spaced from one another, a first light-emitting element between the first electrode and the second electrode, and a second light-emitting element between the second electrode and the third electrode, a first connection electrode on the first electrode and in contact with a first end of the first light-emitting element, a second connection electrode on one side of the second electrode and in contact with a first end of the second light-emitting element, a third connection electrode on an opposite side of the second electrode and in contact with a second end of the first light-emitting element, and a fourth connection electrode on the third electrode and in contact with a second end of the second light-emitting element.
Abstract:
A display device includes a pixel disposed in a display area. The pixel includes a first electrode and a second electrode spaced apart from each other; a light emitting element disposed between the first electrode and the second electrode and including a first end portion and a second end portion; a third electrode disposed on the first end portion of the light emitting element and electrically connecting the first end portion to the first electrode; and a fourth electrode disposed on the second end portion of the light emitting element and electrically connecting the second end portion to the second electrode. An opening is formed in at least one of the first to fourth electrodes and disposed in a first area and a second area that are adjacent to the first end portion and the second end portion of the light emitting element.
Abstract:
A polarizing layer includes a substrate and a plurality of parallel wires disposed on the substrate. Each of the plurality of wires includes a base layer disposed on the substrate and an anti-reflective layer disposed on the base layer. The base layer includes aluminum or an aluminum alloy. The anti-reflective layer has a thickness within a range of 12 nm to 40 nm.
Abstract:
A display device includes: a thin film transistor array panel through which an incident light passes; and a color conversion display panel from which wavelength-converted incident light is emitted to display an image, the color conversion display panel including: a substrate facing the thin film transistor array panel; and between the second substrate and the thin film transistor array panel: color conversion patterns which each wavelength-converts the incident light passed through the thin film transistor array panel, and a transmission pattern which transmits the incident light passed through the thin film transistor array panel; a polarization layer disposed respectively between the thin film transistor array panel, and each of the color conversion and transmission pattern; and an imprint resin layer disposed respectively between the polarization layer, and each of the color conversion and transmission pattern, the imprint resin layer defining an uneven surface thereof facing the polarization layer.
Abstract:
A wire grid pattern used as a wire grid polarizer included in a display device or a master substrate for fabricating the wire gird polarizer include a substrate; a cell area having a plurality of cells, each of the plurality of cells having a plurality of wires protruding from the substrate and arranged in a substantially parallel relationship at regular intervals; and a bezel area disposed along a periphery of the cell area. The cell area includes a trench area separating at least some of the cells. A method for fabricating the wire grid pattern also is disclosed.
Abstract:
A display panel comprises a substrate, a gate line, a data line insulated from the gate line, a thin film transistor electrically connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode group formed on the substrate, a gate insulating film formed on the gate electrode group, an active layer formed on the gate insulating film to at least partially overlap the gate electrode group and a source electrode and a drain electrode formed on the active layer so as to be spaced apart from each other, wherein the gate electrode group includes a first gate electrode formed on the substrate, a second gate electrode formed on the first gate electrode, and an insulating layer between the first gate electrode and the second gate electrode, and wherein the first gate electrode has reflectivity higher than that of the second gate electrode.
Abstract:
A display device includes a first base substrate, a second base substrate, pixels, a first polarizer, and a second polarizer. The first base substrate includes light transmitting areas and a light blocking area surrounding each of the light transmitting areas. The pixels respectively overlap the light transmitting areas. The first and second polarizers are spaced apart from each other such that the pixels are disposed therebetween. At least one of the first and second polarizers includes a plurality of optical conversion layers, each of which comprises a plurality of lattice wires.
Abstract:
An organic light emitting diode display device, including a flexible substrate; pixels on the flexible substrate, the pixels including an organic emission layer; a pixel definition layer between the pixels, the pixel definition layer including openings; an encapsulation layer covering the pixels; and a conductive light shielding member on the encapsulation layer, the conductive light shielding member not overlapped with the pixels, and overlapped with the pixel definition layer.