Abstract:
A TFT array substrate, OLED display including the same, and a manufacturing method of the OLED display are disclosed. In one aspect, the TFT array substrate includes a substrate and a TFT formed over the substrate. The TFT includes an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer interposed between the gate electrode and the source and drain electrodes. Each of the source and drain electrodes is interposed between the active layer and the first insulating layer. The TFT array substrate also includes a capacitor formed over the substrate and having lower and upper electrodes and a pixel electrode electrically connected to the TFT.
Abstract:
A TFT array substrate, OLED display including the same, and a manufacturing method of the OLED display are disclosed. In one aspect, the TFT array substrate includes a substrate and a TFT formed over the substrate. The TFT includes an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer interposed between the gate electrode and the source and drain electrodes. Each of the source and drain electrodes is interposed between the active layer and the first insulating layer. The TFT array substrate also includes a capacitor formed over the substrate and having lower and upper electrodes and a pixel electrode electrically connected to the TFT.
Abstract:
A display apparatus for improving a reflective color sense includes a thin film transistor disposed over a substrate, a planarization layer disposed over the thin film transistor, a pixel electrode disposed over the planarization layer and electrically connected to the thin film transistor through a contact hole provided in the planarization layer, a pixel definition layer covering an edge of the pixel electrode to expose a center portion of the pixel electrode, and a bank arranged apart from the pixel defining layer and disposed over an area of a portion of the pixel electrode exposed by the pixel definition layer, the bank overlapping the contact hole when viewed in a direction perpendicular to the substrate.
Abstract:
A display apparatus includes a biometric information sensing layer including a sensor, a display module disposed on the biometric information sensing layer and including a plurality of pixels, and an optical pattern layer disposed between the biometric information sensing layer and the display module and including a light shielding part and a transmission part. The light shielding part includes a plurality of light shielding layers. The transmission part has a light transmittance greater than a light transmittance of the light shielding part. A plurality of holes is defined in each of the light shielding layers. The transmission part fills the holes and portions between the light shielding layers.
Abstract:
A display apparatus includes: a substrate; a display element on the substrate; a thin-film encapsulation layer on the display element and including a first inorganic encapsulation layer, a first organic encapsulation layer, and a second inorganic encapsulation layer; a first light-shielding layer between the first inorganic encapsulation layer and the first organic encapsulation layer and having a first opening corresponding to an emission area of the display element; and a second light-shielding layer over the thin-film encapsulation layer and having a second opening corresponding to the emission area of the display element.
Abstract:
A display device includes a sensor having a detection electrode. An optical pattern layer is disposed directly on the sensor and includes a plurality of transmission portions and a light blocking portion. A display panel is disposed on the optical pattern layer. A minimum distance between the detection electrode and the light blocking portion is in a range of 1 micrometer-5 micrometers.
Abstract:
A display apparatus includes a biometric information sensing layer including a sensor, a display module disposed on the biometric information sensing layer and including a plurality of pixels, and an optical pattern layer disposed between the biometric information sensing layer and the display module and including a light shielding part and a transmission part. The light shielding part includes a plurality of light shielding layers. The transmission part has a light transmittance greater than a light transmittance of the light shielding part. A plurality of holes is defined in each of the light shielding layers. The transmission part fills the holes and portions between the light shielding layers.
Abstract:
An organic light emitting display device includes a substrate including an emission region and a non-emission region, an organic light emitting element which emits light, the organic light emitting element including a first electrode disposed on the substrate in the emission region, an organic light emitting layer disposed on the first electrode in the emission region, and a second electrode disposed on the organic light emitting layer, and a via insulation layer disposed on the substrate in the non-emission region thereof, the via insulation layer including an organic insulation material. The via insulation layer defines an opening therein in which the organic light emitting layer of the organic light emitting element is disposed.
Abstract:
An organic light-emitting display apparatus implemented by using a plurality of organic light-emitting diodes on a substrate and including a first pixel and a second pixel respectively emitting light of different colors, includes: a pixel-defining layer including a first opening and a second opening, the first opening defining an emission area of the first pixel, and the second opening defining an emission area of the second pixel; a total reflective layer over the pixel-defining layer, the total reflective layer including a first upper opening corresponding to the first pixel and a second upper opening corresponding to the second pixel; and a planarization layer covering the total reflective layer and having a refractive index greater than a refractive index of the total reflective layer, wherein an area of the first upper opening is different from an area of the second upper opening.
Abstract:
A display apparatus including a substrate having a display area, a plurality of pixel circuits arranged in the display area, each of the pixel circuits including a thin-film transistor, a plurality of display elements respectively connected to the pixel circuits, and a composite layer disposed between the pixel circuits and the display elements, the composite layer including a first inorganic insulating layer, a first organic insulating layer, and a second inorganic insulating layer, which are sequentially stacked.