Abstract:
A display apparatus includes: a substrate; at least one inorganic layer disposed on the substrate and including a first area, a second area, and an elongated recess disposed between the first area and the second area, the first area and the second area being adjacent to each other in a first direction; an organic material disposed in the recess; a plurality of first pixel electrodes disposed on the first area of the inorganic layer; and a plurality of second pixel electrodes disposed on the second area of the inorganic layer. The number of the plurality of first pixel electrodes and the number of the plurality of second pixel electrodes are different from each other.
Abstract:
A display device having an improved light-extraction efficiency and a reduced color sense variation according to a viewing angle includes a pixel electrode on a substrate, an insulating layer defining an emission area via an opening that covers edges of the pixel electrode and exposes a center portion of the pixel electrode, a first light extraction pattern on the pixel electrode, the first light extraction pattern having a side surface inclined at a first angle, and a second light extraction pattern surrounding the first light extraction pattern on an outer portion of the first light extraction pattern, the second light extraction pattern having a side surface inclined at a second angle that is less than the first angle.
Abstract:
An organic light-emitting display apparatus includes a substrate including a first region configured to realize an image, and a second region through which an external light penetrates; a first electrode provided in the first region; an auxiliary electrode provided in the second region; a pixel defining layer provided in at least the first region and including a first opening exposing at least a part of the first electrode and a second opening exposing at least a part of the auxiliary electrode; a second electrode provided throughout the first region and the second region, facing the first electrode, and electrically connected to the auxiliary electrode; and an intermediate layer provided in at least the first region, provided above the first electrode and below the second electrode, and including an organic emission layer.
Abstract:
Provided is a display device including a display panel having a plurality of pixel regions, a first insulating layer on the display panel, having a first refractive index, and having a plurality of first openings defined in regions which overlap the plurality of pixel regions, a second insulating layer directly on the first insulating layer and having a plurality of second openings defined in regions which correspond to the plurality of first openings, and a third insulating layer covering the display panel, the first insulating layer, and the second insulating layer and having a second refractive index higher than the first refractive index, wherein the third insulating layer may overlap the plurality of pixel regions on a plane.
Abstract:
An organic light-emitting display apparatus includes a substrate including a first region configured to realize an image, and a second region through which an external light penetrates; a first electrode provided in the first region; an auxiliary electrode provided in the second region; a pixel defining layer provided in at least the first region and including a first opening exposing at least a part of the first electrode and a second opening exposing at least a part of the auxiliary electrode; a second electrode provided throughout the first region and the second region, facing the first electrode, and electrically connected to the auxiliary electrode; and an intermediate layer provided in at least the first region, provided above the first electrode and below the second electrode, and including an organic emission layer.
Abstract:
A thin film transistor substrate and an organic light-emitting diode (OLED) display are disclosed. In one aspect, the OLED includes a thin film transistor substrate. The thin film transistor substrate includes a substrate, a source electrode formed over the substrate, a drain electrode formed over the substrate and spaced apart from the source electrode, an oxide semiconductor layer, and a gate electrode. The oxide semiconductor layer includes a source area at least partially overlapping the source electrode, a drain area at least partially overlapping the drain electrode, and a channel area formed between the source area and the drain area. The gate electrode, which is insulated from the oxide semiconductor layer, has a first width at a first end thereof, a second width at a second end opposite to the first end thereof and the first width is different from the second width.
Abstract:
A thin film transistor substrate and an organic light-emitting diode (OLED) display are disclosed. In one aspect, the OLED includes a thin film transistor substrate. The thin film transistor substrate includes a substrate, a source electrode formed over the substrate, a drain electrode formed over the substrate and spaced apart from the source electrode, an oxide semiconductor layer, and a gate electrode. The oxide semiconductor layer includes a source area at least partially overlapping the source electrode, a drain area at least partially overlapping the drain electrode, and a channel area formed between the source area and the drain area. The gate electrode, which is insulated from the oxide semiconductor layer, has a first width at a first end thereof, a second width at a second end opposite to the first end thereof and the first width is different from the second width.
Abstract:
The display device includes a display panel and an input detection member. The input detection member includes a first conductive pattern, a first insulating layer covering the first conductive pattern, a second conductive pattern disposed on the first insulating layer, and a second insulating layer covering the second conductive pattern. Both the first insulating layer and the second insulating layer include an organic material. The refractive index of the second insulating layer is greater than that of the first insulating layer.
Abstract:
A transparent display panel includes a plurality of unit pixels. Each of the unit pixels includes a non-transparent region in which a first light-emitting element that generates and outputs first color light and a second light-emitting element that generates and outputs second color light are disposed and a transparent region in which a third light-emitting element that generates and outputs third color light is disposed.
Abstract:
A flexible display device may include a substrate and a display unit provided over the substrate. The substrate may include: a first base layer, a second base layer provided over the first base layer, and a first barrier layer provided between the first and second base layers. A face of the first base layer is larger than a face of the second base layer and is parallel to the face of the second base layer.