Abstract:
An assist driver is coupled to an end of a word line to which a word line driver is not coupled, and couples the other end of the word line to a first power source, in accordance with a voltage of the other end of the word line.
Abstract:
A semiconductor device includes: a first power source line for supplying a first voltage; a second power source line for supplying a second voltage; a memory circuit coupled with the first and second power source lines; a first switch which electrically coupling the first power source line with the second power source line and electrically decoupling the first power source line from the second power source line, in response to a control signal; a second switch which electrically coupling the first power source line with the second power source line and electrically decoupling the first power source line from the second power source line, in response to the control signal, wherein a memory circuit includes a memory cell array and a peripheral circuit, wherein a memory cell array includes a plurality of memory cells, the memory cells coupled with the second power source line.
Abstract:
A semiconductor device includes: a first power source line for supplying a first voltage; a second power source line for supplying a second voltage; a memory circuit coupled with the first and second power source lines; a first switch which electrically coupling the first power source line with the second power source line and electrically decoupling the first power source line from the second power source line, in response to a control signal; a second switch which electrically coupling the first power source line with the second power source line and electrically decoupling the first power source line from the second power source line, in response to the control signal, wherein a memory circuit includes a memory cell array and a peripheral circuit, wherein a memory cell array includes a plurality of memory cells, the memory cells coupled with the second power source line.
Abstract:
A semiconductor storage device includes an SRAM memory cell composed of a drive transistor, a transfer transistor and a load transistor, an I/O circuit that is connected to bit lines connected to the memory cell, and an operating mode control circuit that switches an operating mode of the I/O circuit between a resume standby mode and a normal operation mode, wherein the I/O circuit includes a write driver that writes data to bit lines, a sense amplifier that reads data from the bit lines, a first switch inserted between the bit lines and the write driver, a second switch inserted between the bit lines and the sense amplifier, a precharge circuit that precharges the bit lines, and a control circuit that controls the first and second switches and the precharge circuit according to a signal from the operating mode control circuit.
Abstract:
A semiconductor device includes a first power source line which accepts the supply of power in the active mode, a second power source line which accepts the supply of power in the active mode and the standby mode, a memory circuit to be coupled with the first and second power source lines and a first switch which electrically couples the first power source line with the second power source line in the active mode and electrically decouples the first power source line from the second power source line in the standby mode. The memory circuit includes a memory array, a peripheral circuit and a second switch. Each of the first and second switches includes a first PMOS transistor and a second PMOS transistor.
Abstract:
A semiconductor device includes a first power source line which accepts the supply of power in the active mode, a second power source line which accepts the supply of power in the active mode and the standby mode, a memory circuit to be coupled with the first and second power source lines and a first switch which electrically couples the first power source line with the second power source line in the active mode and electrically decouples the first power source line from the second power source line in the standby mode. The memory circuit includes a memory array, a peripheral circuit and a second switch. Each of the first and second switches includes a first PMOS transistor and a second PMOS transistor.
Abstract:
A semiconductor storage device includes an SRAM memory cell composed of a drive transistor, a transfer transistor and a load transistor, an I/O circuit that is connected to bit lines connected to the memory cell, and an operating mode control circuit that switches an operating mode of the I/O circuit between a resume standby mode and a normal operation mode, wherein the I/O circuit includes a write driver that writes data to bit lines, a sense amplifier that reads data from the bit lines, a first switch inserted between the bit lines and the write driver, a second switch inserted between the bit lines and the sense amplifier, a precharge circuit that precharges the bit lines, and a control circuit that controls the first and second switches and the precharge circuit according to a signal from the operating mode control circuit.
Abstract:
A semiconductor device includes a first mode and a second mode different from the first mode, includes a memory circuit including a first switch, a memory array, and a peripheral circuit. A first power source line is electrically coupled with an I/O circuit of the peripheral circuit and is supplied with a first voltage in the first mode. A second power source line is electrically coupled with a memory cell of the memory array, and supplied with a second voltage lower than the first voltage in the second mode.
Abstract:
A semiconductor storage device includes, a memory array, a plurality of memory cells provided in rows and columns, and a control circuit for controlling the memory array, each of the memory cells being a static-type memory cell comprising driving transistors, transfer transistors, and load elements.
Abstract:
The present invention provides a semiconductor memory device that can perform failure detection of an address decoder by a simple method with a low area overhead. The semiconductor memory device includes: a first memory array having a plurality of first memory cells arrange in matrix; a plurality of word lines provided corresponding to each of the memory cell rows; an address decoder for selecting a word line from the word lines based on the input address information; a second memory array that is provided adjacent to the first memory array in the column direction, having a plurality of second memory cells able to read address information used in the selection of the previously stored word line, according to the selection of the word line extended to the second memory array; and a comparison circuit for comparing the input address information with the address information read from the second memory array.