Abstract:
A communication system comprises a signal generator, polarizer, signal combiner, transmitter, positioning device, and controller. The signal generator converts first and second received data streams into respective first and second orthogonal linearly polarized signals. The polarizer is at a first rotation angle and converts first and second orthogonal linearly polarized signals into, respectively, a first right-hand-circularly polarized (RHCP) signal and first left-hand circularly polarized (LHCP) signal, which are combined in signal combiner into a signal sent by transmitter to a receiver. The positioning device adjusts the first rotation angle to substantially increase isolation between third and fourth orthogonal linearly polarized signals at the receiver. The controller performs the real-time analysis of transmission loss and directs the positioning device to adjust the first rotation angle.
Abstract:
A communication system comprises a signal generator, polarizer, signal combiner, transmitter, positioning device, and controller. The signal generator converts first and second received data streams into respective first and second orthogonal linearly polarized signals. The polarizer is at a first rotation angle and converts first and second orthogonal linearly polarized signals into, respectively, a first right-hand-circularly polarized (RHCP) signal and first left-hand circularly polarized (LHCP) signal, which are combined in signal combiner into a signal sent by transmitter to a receiver. The positioning device adjusts the first rotation angle to substantially increase isolation between third and fourth orthogonal linearly polarized signals at the receiver. The controller performs the real-time analysis of transmission loss and directs the positioning device to adjust the first rotation angle.
Abstract:
An apparatus for conveying an electrical signal includes: a conductive pathway having a conductive material. The conductive material has a first edge and a second edge and is configured to convey the electrical signal. The apparatus also includes a resistive material in contact with at least a portion of the conductive pathway, covering an edge of the conductive pathway, and extending beyond the edge. The resistive material has a conductivity less than the conductivity of the conductive material.
Abstract:
A modular communications array includes: an antenna card including a patch antenna array for communicating RF signals; a chip carrier card including a plurality of monolithic microwave integrated circuits (MMICs), each with a power amplifier (PA) and positioned on a respective metal post of a plurality of metal posts, wherein; a phase shifter card including a plurality of phase shifter circuits for beam steering and gain control and a plurality of cavities. Each of the cavities corresponds to a location for the respective metal post on the chip carrier card; and a cooling block coupled to the chip carrier card by a thermally conductive epoxy for cooling, where the phase shifter card is replaceable without affecting the components of the antenna card and the chip carrier card.
Abstract:
In one aspect, a Y-splitter includes a first arm having a first port, a second arm having a second port, a third arm having a third port, a fourth arm having a fourth port and a Y-split portion having a first end coupled to the first arm, a second end coupled to the second arm, a third end coupled to the third arm and a fourth end coupled to the fourth arm. The Y-split portion splits a signal from a first signal path from the first port into a second signal on a second signal path and a third signal on a third signal path. A first angle between the second signal path and the first signal path is greater than 90 degrees and a second angle between the third signal path and the first signal path is greater than 90 degrees.
Abstract:
A low-loss band and polarization-selectable gender-selectable transceiver for use with a reflector-type antenna suitable for the E-band frequency allocation as well as other RF bands in which the upper and lower bands are separated by a stop band. In addition to providing the gender-selectable combination of the upper and lower bands for transmit and receive, this topology allows for the selection of transmit, and receive polarizations. A transceiver may transmit and receive on the same or on orthogonal polarizations. Paired transceivers may transmit on the same or on orthogonal polarizations. This is accomplished by integrating a rotatable polarizer (e.g. a ¼ wave plate) and a polarization duplexer (e.g. an orthomode transducer) in a FDD (Frequency-Domain Duplexed) system. The rotatable polarizer allows for selection of both transmit and receive bands and polarizations.
Abstract:
A power amplifier uses a modular architecture in which each of the one or more modules spatially combines the power from multiple amplified channels. The individual modules are configured to operate in the EHF band and above at low loss. This entails reconfiguring the input and output splitters, the end-launched transitions between the amplifier chips and the input and output splitters and the packaging of the DC power and control board. The input splitter uses a split-block technology. The output splitter maps each amplified channel into a two-dimensional aperture.
Abstract:
A power amplifier uses a modular architecture in which each of the one or more modules spatially combines the power from multiple amplified channels. The individual modules are configured to operate in the EHF band and above at low loss. This entails reconfiguring the input and output splitters, the end-launched transitions between the amplifier chips and the input and output splitters and the packaging of the DC power and control board. The input splitter uses a split-block technology. The output splitter maps each amplified channel into a two-dimensional aperture.
Abstract:
An apparatus for conveying an electrical signal includes: a conductive pathway having a conductive material. The conductive material has a first edge and a second edge and is configured to convey the electrical signal. The apparatus also includes a resistive material in contact with at least a portion of the conductive pathway, covering an edge of the conductive pathway, and extending beyond the edge. The resistive material has a conductivity less than the conductivity of the conductive material.