Abstract:
The present disclosure includes a method of charging a battery. In one embodiment, the method comprises receiving, in a battery charging circuit on an electronic device, an input voltage having a first voltage value from an external power source. The battery charger is configured to produce a charge current having a first current value into the battery. The input current limit and/or duty cycle of the charger is monitored. Control signals may be generated to increase the first voltage value of the input voltage if either (i) the input current limit is activated or (ii) the duty cycle reaches a maximum duty cycle. The charger also receives signals indicating a temperature inside the electronic device and generates control signals to decrease the value of the input voltage when the temperature increases above a threshold temperature.
Abstract:
The present disclosure includes circuits and methods for cable resistance compensation. In one embodiment, the present disclosure includes a circuit comprising a regulator coupled to receive an input voltage and an input current from an external power source across a cable, a voltage sensor coupled to sense the input voltage, a collapse detector coupled to detect whether or not the input voltage is below a first value, and a current limit circuit to control a maximum current in the regulator. The current limit circuit is reconfigured to a plurality of current limit values and the collapse detector detects if the input voltage from the external power source collapses below the first value at the plurality of current limit values. The voltage sensor measures different voltages at different input currents, and in accordance therewith, reduces collapse voltage value to compensate for a voltage drop caused by a resistance of the cable.
Abstract:
The present disclosure includes circuits and methods for controlling skin temperature of an electronic device. In one embodiment, a thermal sensor is configured on a case of a handheld electronic device. The thermal sensor is coupled to a battery charger having a current limit circuit. If the sensed temperature of the case increases above a threshold, a current limit is reduced to reduce current in the battery charger.
Abstract:
In one embodiment, an electronic system comprises one or more power circuits configured to receive a first voltage from an external power source and produce a second voltage to one or more electronic components of the electronic system, and a power management circuit configured to determine one or more output currents of the one or more power circuits, wherein the power management circuit causes the external power source to change the first voltage based on at least one output current of at least one power circuit to reduce power loss of the at least one power circuit.
Abstract:
A system and method providing for delayed initialization of a device in a wireless charging environment. In certain aspects, a device is configured to detect power wirelessly received from a power transmitter. The device may further wirelessly transmit a message to the power transmitter in response to the received power, further determining that a power level of the received power has been adjusted in response to the message. In response to the determining the power level has been adjusted, a controller that is powered by the adjusted power level may be initialized.
Abstract:
Circuitry in a portable device may be attached to external device, such as a power supply, to receive a voltage at a desired voltage level from the external device. The circuitry may assert one of several electrical configurations on the cabling that electrically connects the portable device to the external device to indicate to the external device a desired voltage level.
Abstract:
In one embodiment, a fuel gauge system is described that comprises two or more battery chargers on different integrated circuits (ICs) coupled in parallel to a battery for charging the battery. Each battery charger IC generates a current signal indicative of current generated by said each battery charger IC into the same battery. A fuel gauge is responsible for accurately reporting the battery state of charge, based on a combination of voltage, current, and temperature information.
Abstract:
A multi-phase charging circuit comprises a device that can be configured for master mode operation or slave mode operation. In master mode operation, the device generates a control signal and a clock signal to control operation of a switching circuit for generating charging current. In slave mode operation, the device receives externally generated control and clock signals to control operation of its switching circuit.
Abstract:
A battery charging circuit comprises two or more charging circuits, each capable of charging a battery. The charging outputs of the charging circuits are connected together and can be connected to a battery to provide fast charging of the battery. The charging circuits can be configured so that they do not adversely interfere with each other during battery charging.
Abstract:
In one embodiment, a fuel gauge system is described that comprises two or more battery chargers on different integrated circuits (ICs) coupled in parallel to a battery for charging the battery. Each battery charger IC generates a current signal indicative of current generated by said each battery charger IC into the same battery. A fuel gauge is responsible for accurately reporting the battery state of charge, based on a combination of voltage, current, and temperature information.