Abstract:
The disclosure generally relates to enabling communication among one or more Internet of Things (IoT) device groups. In particular, various heterogeneous IoT devices that may need to interact with one another in different ways may be organized into IoT device groups to support efficient interaction among the IoT devices. For example, pre-defined IoT device groups may be formed organize certain IoT devices that perform similar activities and certain IoT devices may be dynamically allocated to ad-hoc IoT device groups for certain contexts (e.g., the ad-hoc IoT device groups may include IoT devices that can implement a desired function and therefore be dynamically formed to implement the desired function). Furthermore, the IoT groups may communicate hierarchically, wherein messages may be exchanged among IoT group owners or ranking members to support efficient communication between different IoT groups.
Abstract:
In an embodiment, a UE obtains one or more quorum conditions for communication with a given group from a set of groups to which the UE is registered. The UE searches, over a P2P interface, to identify one or more group members that are registered to the given group and which are proximate to the UE. The UE determines whether the identified one or more group members are sufficient to satisfy at least one of the one or more quorum conditions. The UE selectively triggers a communicative action associated with the given group based on whether the determining determines the at least one quorum condition to be satisfied.
Abstract:
The disclosure relates to identifying an object associated with a nearby Internet of Things (IoT) device. In an aspect, a device receives identifying information associated with the nearby IoT device, detects a nearby object in a field of view of a camera application, determines whether or not the nearby object is associated with the nearby IoT device based on the received identifying information, and based on the nearby object being associated with the nearby IoT device, determines that the nearby object corresponds to the object associated with the nearby IoT device.
Abstract:
The disclosure generally relates to offloading communication from a network infrastructure to direct peer-to-peer communication. In particular, a server may receive peer-to-peer status information over the network infrastructure from at least two client devices that intend to communicate, wherein the peer-to-peer status information may include at least coarse or precise location information associated with the client devices. The server may then instruct the client devices to communicate over a direct peer-to-peer connection that bypasses the network infrastructure in response to determining that the location information received from the client devices and other conditions permit offloading the communication from the network infrastructure. For example, the server may determine whether the communication can be offloaded based at least in part on whether an estimated distance between the client devices falls within a maximum range associated with one or more peer-to-peer interfaces supported on one or more of the client devices.
Abstract:
Embodiment methods and systems include external hardware that can be fitted to a wireless communication device that stores a communication application, communication presets and/or data that are downloaded to the wireless communication device where it may be implemented to optimize group communications on the wireless devices. The wireless device may be coupled to an external case configured with a physical button that enables group communication such as push-to-talk and other push-to-experience capabilities. Optimizations for push-to-talk communication may be implemented in a push-to-talk mode in response to detecting connection to the external hardware. Signaling between the external case and the wireless device allows detection of the switch to (or from) push-to-talk mode when a user depresses (or releases) the hard key.
Abstract:
A smart Voice Over LTE (VoLTE) application for allowing a wireless mobile device to select an appropriate access technology for establishing a voice call with a target mobile device, based on the capabilities of the target mobile device. Selection on the client side allows interoperability of a VoLTE wireless mobile device on a circuit switched network without requiring use of a gateway between the circuit switched and VoLTE networks. If the target mobile device is only configured for legacy circuit switched network calls, the wireless mobile device need not begin the call connection on the VoLTE network and instead may establish the call on the circuit switched network from the beginning.
Abstract:
A framework is provided that enables a group communication session participant to specify the manner in which his or her computing device handles/renders media received from other group communication session participants based on the identity of the sender of the media. The various embodiments enable the group communication participant to manage the presentation of media on the various interfaces of his or her computing device based on both the type of the received media and the sender ID (i.e., talker ID) associated with the received media. In an embodiment, the user may be enabled to dynamically switch the media handling settings during a group communication session.
Abstract:
In an embodiment, a client device obtains a list of client devices registered in association with a particular client application, and then detects listed client device(s) as proximate via a local communications interface. One of the proximate client devices is identified as responsible for sending an aggregated registration request message for renewing their respective application registrations with a server. In another embodiment, the server receives a registration message for the client application from a client device and detects that at least one other registered client device for that client application is proximate to the requesting client device. The server attempts to preemptively renew the registrations for both the requesting client device and the at least one other registered client device based on the proximity detection.
Abstract:
A system and method for associating a mobile computing device with a particular seat in a seating environment. The system collects first sensor data from device sensors of a first mobile computing device based on activity detected within the seating environment. The system then determines, for each of a plurality of seats in the seating environment, a degree of correlation with the mobile computing device based at least in part on the first sensor data, and associates the mobile computing device with the seat, among the plurality of seats, having the highest degree of correlation with the first mobile computing device.
Abstract:
In the network-based group management and floor control mechanism disclosed herein, a server may receive a request to occupy a shared IoT resource from a member device in an IoT device group and transmit a message granting the member IoT device permission to occupy the shared IoT resource based on one or more policies. For example, the granted permission may comprise a floor that blocks other IoT devices from accessing the shared IoT resource while the member IoT device holds the floor. Furthermore, the server may revoke the permission if the member IoT device fails to transmit a keep-alive message before a timeout period expires, a high-priority IoT device pre-empts the floor, and/or based on the policies. Alternatively, the server may make the shared IoT resource available if the member IoT device sends a message that voluntarily releases the floor.