Abstract:
A mobile computing device is operated to control a vehicle. A digital key for accessing a vehicle is stored for accessing the vehicle. Profile information is associated with the digital key for configuring operation and/or use of a vehicle. The profile information may include one or more outside parameters for implementing one or more pre-entry vehicle configurations. When one or more proximity conditions are detected as being satisfied as between the mobile computing device and the vehicle, a communication is sent to the vehicle in order to cause the vehicle to implement one or more pre-entry vehicle configurations. The communication can be based on the digital key and may specify the one or more outside parameters.
Abstract:
The disclosure relates to an Internet of Things (IoT) connectivity module that can add connectivity to an otherwise non-connected host and simplify procedures to connect, configure, and enable device-to-device (D2D) communication between the host and various heterogeneous IoT devices. For example, according to various aspects, the connectivity module may comprise a connectivity chip configured to implement a wireless network platform (e.g., a radio-frequency front end and one or more wireless radios), one or more standard peripheral interfaces configured to interconnect the connectivity module to a host having at least one processor, and a D2D application configured to implement a proximal D2D communication framework and expose a command protocol associated with the proximal D2D communication framework via the standard peripheral interfaces. Furthermore, according to various aspects, the connectivity module may comprise a dedicated interrupt line that may be asserted to notify the host when data becomes available to consume.
Abstract:
A system and method for associating a mobile computing device with a particular seat in a seating environment. The system collects first sensor data from device sensors of a first mobile computing device based on activity detected within the seating environment. The system then determines, for each of a plurality of seats in the seating environment, a degree of correlation with the mobile computing device based at least in part on the first sensor data, and associates the mobile computing device with the seat, among the plurality of seats, having the highest degree of correlation with the first mobile computing device.
Abstract:
A system and method for associating a mobile computing device with a particular seat in a seating environment. The system collects first sensor data from device sensors of a first mobile computing device based on activity detected within the seating environment. The system then determines, for each of a plurality of seats in the seating environment, a degree of correlation with the mobile computing device based at least in part on the first sensor data, and associates the mobile computing device with the seat, among the plurality of seats, having the highest degree of correlation with the first mobile computing device.
Abstract:
A mobile computing device is operated to control a vehicle. A digital key for accessing a vehicle is stored for accessing the vehicle. Profile information is associated with the digital key for configuring operation and/or use of a vehicle. The profile information may include one or more outside parameters for implementing one or more pre-entry vehicle configurations. When one or more proximity conditions are detected as being satisfied as between the mobile computing device and the vehicle, a communication is sent to the vehicle in order to cause the vehicle to implement one or more pre-entry vehicle configurations. The communication can be based on the digital key and may specify the one or more outside parameters.
Abstract:
In response to detecting the entry condition, a determination is made as to when multiple mobile computing devices are present within the vehicle. An occupancy zone is determined for each multiple mobile computing device that is determined as being present within the vehicle. Profile information is determined for each mobile computing device. At least one of an operational or usage facet of the vehicle can be configured at each occupancy zone in which one of the mobile computing devices is determined to be present. The operational or usage facet of the vehicle at a location of each occupancy zone can be based at least in part on the profile information determined from the mobile computing device that is deemed to be present at that occupancy zone.
Abstract:
In response to detecting the entry condition, a determination is made as to when multiple mobile computing devices are present within the vehicle. An occupancy zone is determined for each multiple mobile computing device that is determined as being present within the vehicle. Profile information is determined for each mobile computing device. At least one of an operational or usage facet of the vehicle can be configured at each occupancy zone in which one of the mobile computing devices is determined to be present. The operational or usage facet of the vehicle at a location of each occupancy zone can be based at least in part on the profile information determined from the mobile computing device that is deemed to be present at that occupancy zone.