Abstract:
The present disclosure presents a method and apparatus for expedited mobile device handover that include performing one or more handover tasks in parallel that have previously been performed exclusively in serial. For example, the disclosure presents a method for wireless device handover, which may include acquiring a target cell, ascertaining a system frame number (SFN) of the target cell, calculating a connection frame number (CFN) for a dedicated channel (DCH) transmission, and reconfiguring a dedicated physical channel (DPCH) based on the calculated CFN. In addition, such an example method may include, while performing at least one of the ascertaining of the SFN, the calculating of the CFN, and the reconfiguring of the DPCH, contemporaneously performing at least one of establishing a downlink dedicated physical channel (DL-DPCH), establishing a synchronization with the target cell, and establishing an uplink dedicated physical channel (UL-DPCH) subsequent to the downlink synchronization.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish, using a first subscription of the UE, a first communication connection associated with a first service. The UE may establish, using a second subscription of the UE, a second communication connection associated with a second service. The UE may operate in a dual subscriber identity module (SIM) dual active (DSDA) mode based at least in part on establishing the first communication connection and establishing the second communication connection. The UE may perform an action to maintain concurrent services, including the first service and the second service, while operating in the DSDA mode. Numerous other aspects are described.
Abstract:
A user equipment (UE) may monitor a channel for wireless communication associated with a first radio access technology (RAT) during one or more of a first active duration or a first inactive duration. The UE may operate in a first power mode during the first inactive duration. The UE may monitor the channel for wireless communication associated with a second RAT during one or more of a second active duration or a second inactive duration. The UE may operate during the second inactive duration in one or more of the first power mode or a second power. The UE may operate according to the first mode or the second mode based on the monitoring of the channel associated with the first RAT and the second RAT.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether a slot timing difference, between a first cell and a second cell for a dual connectivity mode, satisfies a threshold value, where the first cell is a serving cell associated with a first radio access technology (RAT) and the second cell is a serving cell or a candidate cell associated with a second RAT. The UE may perform an operation to prevent the dual connectivity mode with the second cell, establish the dual connectivity mode with the second cell, maintain the dual connectivity mode with the second cell, or terminate the dual connectivity mode with the second cell based at least in part on whether the slot timing difference satisfies the threshold value. Numerous other aspects are provided.
Abstract:
Methods and apparatus for wireless communications are described. A method of wireless communications includes determining an energy for a first signal received at a first finger of a rake receiver after a reference signal is received at a second finger of the rake receiver, determining an energy for a second signal received at a third finger of a rake receiver before the reference signal is received at the second finger of the rake receiver, and selecting the first signal as a new reference signal when the energy of the first signal exceeds the energy of the second signal by a predefined threshold amount. In another aspect, a method includes assigning a signal received at a rake receiver to a finger of the rake receiver, and deassigning the finger if the signal has an energy level below a preselected lock threshold energy for a predefined time.
Abstract:
An example method may include receiving a first subframe. In addition, the example method may include decoding information transmitted in the first subframe. Further, the example method may include switching to an inactive mode subsequent to the completion of the reception of the first subframe. Further still, the example method may include exiting the inactive mode and decoding downlink data transmitted in one or more second subframes in a current reception (Rx) burst time interval when the decoded information transmitted in the first subframe indicates an upcoming transmission of downlink data in the one or more second subframes.
Abstract:
The present disclosure presents a method and apparatus for expedited mobile device handover that include performing one or more handover tasks in parallel that have previously been performed exclusively in serial. For example, the disclosure presents a method for wireless device handover, which may include acquiring a target cell, ascertaining a system frame number (SFN) of the target cell, calculating a connection frame number (CFN) for a dedicated channel (DCH) transmission, and reconfiguring a dedicated physical channel (DPCH) based on the calculated CFN. In addition, such an example method may include, while performing at least one of the ascertaining of the SFN, the calculating of the CFN, and the reconfiguring of the DPCH, contemporaneously performing at least one of establishing a downlink dedicated physical channel (DL-DPCH), establishing a synchronization with the target cell, and establishing an uplink dedicated physical channel (UL-DPCH) subsequent to the downlink synchronization.
Abstract:
Methods and devices are disclosed for enabling improved performance for page decodes on a SIM of a multi-SIM wireless communication device in which a shared radio frequency (RF) resource is used to read system information for a different SIM. After determining that a first SIM is using the shared RF resource to decode SIBs, the wireless device may receive information about an upcoming page decode time for monitoring a paging channel associated with the second SIM. The wireless device may obtain system information block (SIB) scheduling information associated with the first SIM, and may create a RF resource release gap during the system information read period based on the SIB scheduling information and the upcoming page decode time. Control of the RF resource may be released from the modem stack associated within the first SIM, and gained by a modem stack associated with the second SIM during the RF resource release gap.