Abstract:
Methods and apparatuses for wireless communication and cell monitoring and handover using a downlink dedicated physical channel (DL-DPCH) traffic-to-pilot ratio (TPR) are presented. For example, a method of mobile communication at a user equipment (UE) is presented, which may include starting a time-to-trigger (TTT) interval associated with a neighbor cell in preparation for potential handover of the UE to the neighbor cell according to network-assigned parameters. In addition, the example method may include monitoring a TPR associated with a DL-DPCH of a serving cell of the UE. Furthermore, the example method may include determining that the TPR exceeds a TPR threshold and shortening the TTT interval upon that determination. Moreover, the example method may include transmitting, based on the shortened TTT interval, a Measurement Report Message (MRM) to a network to add the neighbor cell to an active set associated with the UE.
Abstract:
Aspects of the present disclosure provide an apparatus and methods for detecting and handling a spurious Dedicated Physical Channel (DPCH) of a cell in an active set from a mobile station side. A user equipment determines a signal-to-interference ratio (SIR) for each channel of a plurality of channels associated with cells maintained in an active set. A spurious DPCH has the lowest SIR among the plurality of channels. The user equipment puts the detected spurious DPCH in an exclusion mode in which the spurious DPCH is excluded from at least one of channel decoding or SIRE calculation, while maintaining the cell associated with the spurious DPCH in the active set.
Abstract:
Aspects of the present disclosure provide an apparatus and methods for operating the same that can improve out-of-sync and radio link failure handling in a W-CDMA network. A user equipment (UE) establishes a packet switched (PS) connection between the UE and a base station, wherein the PS connection includes a Fractional Dedicated Physical Channel (F-DPCH). The UE configures an in-sync threshold (Qin) and an out-of-sync threshold (Qout) for the F-DPCH, wherein values of the Qin and Qout are set higher than those of corresponding Qin and Qout of a Dedicated Physical Channel (DPCH). The UE further estimates a downlink (DL) Signal to Interference Ratio (SIR) based on one or more transmit power control (TPC) commands of the F-DPCH, and determines whether to release the PS connection based on a comparison of the estimated SIR and Qout of the F-DPCH.
Abstract:
To create additional communication gaps for a user equipment to perform inter-radio access technology (inter-RAT) measurement, the user equipment may discontinue communications during time slots of specific transmission time intervals (TTIs) based on a block error rate of a previous TTI. The time of the discontinued communications may then be allocated for inter-RAT measurement.
Abstract:
To create gaps in communication activity to perform inter radio access technology (IRAT) measurement, a user equipment may isolate silent periods during voice communications. During those silent periods, instead of transmitting special bursts with erasure packets indicating silent periods, the UE may allocate the time slots that would otherwise have sent the special bursts and indicate those slots as idle so they may be used for other purposes, such as IRAT measurement.
Abstract:
UEs are adapted to facilitate calculation of signal-to-interference ratio (SIR) estimates in closed-loop transmission diversity (CLTD) communications before downlink and uplink synchronization is achieved. A UE may receive a transmission sent using transmission diversity. According to one example, the UE may calculate a plurality of signal-to-interference ratio (SIR) estimates for the received transmission, where each signal-to-interference ratio estimate is calculated using a different weight factor. The UE may further select one of the calculated signal-to-interference ratio (SIR) estimates to be employed for the received transmission. According to another example, the UE may calculate a signal-to-interference ratio (SIR) estimate for the received transmission without employing any weight factor. Other aspects, embodiments, and features are also included.
Abstract:
UEs are adapted to facilitate detection and handling of deconstructive impacts of default weight factors employed before downlink and uplink synchronization is achieved in closed-loop transmission diversity communications. According to one example, a UE may receive transmissions sent using a default weight factor for transmission diversity. The UE may determine whether the default weight factor is causing a deconstructive impact on signal-to-interference ratio estimates for the received transmissions. When it is determined that the default weight factor is causing the deconstructive impact on the signal-to-interference ratio estimates for the received transmissions, the UE may employ an alternate closed-loop transmission diversity (CLTD) mode. Other aspects, embodiments, and features are also included.
Abstract:
Techniques for handling fingers with large delay spread through utility optimization are described. A first signal may be received, through a finger of a plurality of fingers in a receiver, at a time that is later than a reference time after a reference signal is received by a reference finger of the plurality of fingers. The reference signal may be included in an on-time group corresponding to a cell. The first signal may be included in a late group corresponding to a virtual cell. The first signal and the reference signal may be compared to one another. Based on the comparing, it may be determined whether to wait for additional signals in the late group or process the signals in the on-time group.
Abstract:
Access terminals are adapted to facilitate closed-loop transmit diversity in wireless communications systems. According to one example, an access terminal can calculate an uplink error rate for even slot indexes and a separate uplink error rate for odd slot indexes in an uplink frame to be transmitted. A respective downlink error rate can be estimated for an in-phase (I) component and a quadrature-phase (Q) component of a downlink transmission. The access terminal may further estimate a phase-related weight that was applied to the downlink transmission based on the downlink error rates and the uplink error rates. Other aspects, embodiments, and features are also included.
Abstract:
Techniques for uplink transmit power command (ULTPC) rejection threshold optimization in WCDMA for power control algorithm 2 (PCA2) are described. Uplink transmit power control commands may be received on a five-slot interval. The uplink transmit power control commands may be decoded for each of the five slots. The decoded uplink transmit power control commands may be compared for each of the five slots to a threshold. The threshold may be optimized to minimize overall transmit power control decision error. A bit decision may be made for each of the five slots based on the comparison and an overall transmit power control command may be determined based on the bit decision for each of the five slots over the five-slot interval.