Abstract:
Techniques for providing a jammer-resistant noise-cancelling receiver front end with band-pass impedance matching and good power efficiency. In an aspect, the center frequency of the band-pass impedance matching advantageously tracks the local oscillator frequency. In an aspect, first and second receive signal paths are provided, with an R-C network coupled to the output of the second receive signal path. The resistance of the R-C network may be selected to provide band-pass impedance matching to the RF input signal. The current outputs of the first and second signal paths are combined using a trans-impedance amplifier (TIA). In an aspect, the TIA may be implemented using a dual input transconductor amplifier to further optimize the noise performance and power efficiency features of the disclosure.
Abstract:
A transceiver for reducing transmit signal leakage is described. The transceiver includes a downconverter that downconverts a receive signal to produce a feedback signal. The transceiver also includes a weight learning module that correlates the feedback signal with a transmit signal to obtain a weight. The transceiver further includes a transmit leakage estimator that obtains an estimated transmit leakage signal based on the weight and the transmit signal. The transceiver also includes a transmit leakage reducer that reduces the transmit leakage in the receive signal based on the estimated transmit leakage signal.
Abstract:
Techniques for simultaneously receiving multiple transmitted signals with independent gain control are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes a low noise amplifier (LNA) and first and second receive circuits. The LNA amplifies a receiver input signal and provides (i) a first amplified signal for a first set of at least one transmitted signal being received and (ii) a second amplified signal for a second set of at least one transmitted signal being received. The first receive circuit scales the first amplified signal based on a first adjustable gain selected for the first set of transmitted signal(s). The second receive circuit scales the second amplified signal based on a second adjustable gain selected for the second set of transmitted signal(s). The first and second adjustable gains may be independently selected, e.g., based on the received powers of the transmitted signals.
Abstract:
An apparatus is disclosed for transmission setting selection. In an example aspect, an apparatus includes a wireless interface device with a communication processor and a radio-frequency front-end. The communication processor is configured to provide a signal. The radio-frequency front-end is coupled to the communication processor and configured to accept the signal. The radio-frequency front-end includes an amplifier configured to amplify the signal based on one or more amplifier settings. The wireless interface device is configured to adjust the one or more amplifier settings responsive to an output power being changed with a gain being unchanged.
Abstract:
An apparatus is disclosed for transmission setting selection. In an example aspect, an apparatus includes a wireless interface device with a communication processor and a radio-frequency front-end. The communication processor is configured to provide a signal. The radio-frequency front-end is coupled to the communication processor and configured to accept the signal. The radio-frequency front-end includes an amplifier configured to amplify the signal based on one or more amplifier settings. The wireless interface device is configured to adjust the one or more amplifier settings responsive to an output power being changed with a gain being unchanged.
Abstract:
Methods, systems, and devices are described for transceiver architecture for millimeter wave wireless communications. A device may include two transceiver chip modules configured to communicate in different frequency ranges. The first transceiver chip module may include a baseband sub-module, a first radio frequency front end (RFFE) component and associated antenna array. The second transceiver chip module may include a second RFFE component and associated antenna array. The second transceiver chip module may be separate from the first transceiver chip module. The second transceiver chip module may be electrically coupled to the baseband sub-module of the first transceiver chip module.
Abstract:
A pair of stacked ground coplanar waveguides (GCPWs) is provided in two consecutive metal layers that are deposited on opposing surfaces of a dielectric layer. A first metal layer on a first side of the dielectric layer forms a first signal trace and an upper ground plane for a first GCPW in the pair. Similarly, a second metal layer on a second surface of the dielectric layer forms a second signal trace and an upper ground plane for a second GCPW in the pair.
Abstract:
A pair of stacked ground coplanar waveguides (GCPWs) is provided in two consecutive metal layers that are deposited on opposing surfaces of a dielectric layer. A first metal layer on a first side of the dielectric layer forms a first signal trace and an upper ground plane for a first GCPW in the pair. Similarly, a second metal layer on a second surface of the dielectric layer forms a second signal trace and an upper ground plane for a second GCPW in the pair.
Abstract:
A wireless device is described. The wireless device includes an antenna. The wireless device also includes a hybrid transformer. The wireless device further includes a frequency matching termination port. The frequency matching termination port provides impedance matching with the antenna at multiple frequencies. The frequency matching termination port may include multiple resistors, inductors and capacitors that can be switched in/out.
Abstract:
Exemplary embodiments are directed to systems, devices, and methods for mitigating effects of transmit signal leakage. A transceiver may include a transmitter and a receiver. The transceiver may further include a multi-tap analog adaptive filter coupled to each of the transmitter and the receiver and configured to generate an estimated transmit leakage signal based on at least a portion of a transmit signal from the transmitter and an error signal from the receiver.