Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an antenna switch selection associated with a dual connectivity antenna configuration, wherein the antenna switch selection is associated with a first radio access technology (RAT) and the dual connectivity antenna configuration permits communication via the first RAT and a second RAT; determine, based at least in part on the antenna switching selection, a quantity of communication chains, associated with the first RAT, that are affected by an antenna switching process of the second RAT; and selectively permit, based at least in part on the quantity of communication chains, a reconfiguration of the dual connectivity antenna configuration according to the antenna switch selection. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a set of reference signals from a base station and may determine a first set of channel state parameters. The UE may determine one or more preprocessed decoder parameters based on a downlink channel decoder of the UE and may perform one or more signal processing operations to determine one or more adjustment values for the first set of channel state parameters. The UE may transmit an indication of a the one or more adjustment values to the base station. In some implementations, the UE may transmit an indication of the one or more preprocessed decoder parameters to the base station and the base station may perform the one or more signal processing operations to determine the one or more adjustment values.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adaptively switch between hybrid automatic repeat request (HARQ) monitoring modes to support power savings. In a first HARQ skipping mode, the UE may transmit an uplink message corresponding to a HARQ identifier and may receive a positive acknowledgment (ACK) message in a HARQ monitoring occasion associated with the HARQ identifier. Upon receiving the ACK message, the UE refrains from monitoring a subsequent HARQ monitoring occasion associated with the HARQ identifier while in the first HARQ skipping mode (e.g., an aggressive HARQ skipping mode). The UE may periodically enter a periodic evaluation mode from the first HARQ skipping mode, in which the UE monitors a subsequent HARQ monitoring occasion after receiving an ACK message to check for false ACK messages. If a false ACK message is detected, the UE enters a first HARQ skipping prohibited mode.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a capability of the UE relating to a carrier configuration of the UE, wherein the carrier configuration relates to carriers of at least two different numerologies; and transmit information identifying the capability, wherein the information identifying the capability identifies a bandwidth or number of carriers that is supported for carriers of a first numerology and one or more scaling values associated with one or more numerologies other than the first numerology. A base station may receive information identifying a capability of a UE relating to a carrier configuration of the UE, wherein the carrier configuration relates to carriers of at least two different numerologies; and determine a configuration for communication with the UE based at least in part on the information identifying the capability. Numerous other aspects are provided.
Abstract:
Cell-specific reference signal (CRS)-based unicast physical downlink shared channel (PDSCH) transmission is discussed for multicast-broadcast single frequency network (MBSFN) subframes. When one or more CRS-based transmissions are scheduled during an MBSFN subframe in an MBSFN region of a transmission frame, a transmitter can transmit CRS and CRS-based unicast transmissions when no multicast-broadcast transmissions are present in the MBSFN subframe. The transmitter will signal the intent to transmit such CRS-based transmissions, thus, allowing receivers to monitor for the CRS-based transmissions, or ignore monitoring if the receivers are configured in incompatible transmission modes. Additionally, capable receivers may enable CRS-based channel estimation for those MBSFN subframes in the MBSFN region when CRS-based transmission is activated.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment concurrently communicates with a source base station (BS) and a target BS on a connection with the source BS and a connection with the target BS as part of a make-before-break (MBB) handover procedure; and performs a common packet data convergence protocol (PDCP) function for the connection with the source BS and the connection with the target BS before the connection with the source BS is released as part of the MBB handover procedure. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for Channel Quality Indicator (CQI) reporting after resumption of Long Term Evolution (LTE) after a temporary suspension. In certain aspects, in order to minimize performance penalty to LTE on resumption after an LTE tune away for example to service a different Radio Access Technology, information available from before the LTE tune away may be used in addition to one or more additional parameters for determining how to perform LTE CQI calculation/update after tuning back to LTE. In certain aspects, a decision regarding whether a User Equipment (UE) reports a CQI based on channel conditions before the LTE tune away or reports a CQI based on channel conditions after tuning back to LTE may be based on a value of the Doppler estimate, a time duration of the LTE tune away, or a combination thereof.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for Channel Quality Indicator (CQI) reporting after resumption of Long Term Evolution (LTE) after a temporary suspension. In certain aspects, in order to minimize performance penalty to LTE on resumption after an LTE tune away for example to service a different Radio Access Technology, information available from before the LTE tune away may be used in addition to one or more additional parameters for determining how to perform LTE CQI calculation/update after tuning back to LTE. In certain aspects, a decision regarding whether a User Equipment (UE) reports a CQI based on channel conditions before the LTE tune away or reports a CQI based on channel conditions after tuning back to LTE may be based on a value of the Doppler estimate, a time duration of the LTE tune away, or a combination thereof.
Abstract:
Methods and apparatus for resuming operations with an LTE network are described. One example method generally includes suspending operations with a base station of a first radio access technology (RAT) network (e.g., LTE network), tuning to a second RAT network (e.g., 1x network) to monitor for paging messages targeting the UE, and determining whether or not to resume operations with the base station of the first RAT network without performing system acquisition based, at least in part, on how much time has elapsed since suspending operations.
Abstract:
A method of wireless communications by a user equipment (UE) includes decoding information received from a base station via a physical downlink shared channel (PDSCH). The UE determines whether to update channel state feedback based on the decoded information. The channel state feedback is updated based on the determination to generate updated channel state feedback. The updated channel state feedback is transmitted to the base station. The UE is configured to update the channel state feedback without an additional measurement of a channel state information reference signal (CSI-RS).