Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for reporting signal quality in overlapping Multimedia Broadcast Single Frequency Networks (MBSFN) areas. A UE may determine a signal quality estimate for each of two or more overlapping MBSFN areas based on Signal to Noise Ratio (SNR) information and Modulation and Coding Scheme (MCS) information for the MBSFN area. The UE may then determine a combined signal quality based on the signal quality estimates of the MBSFN areas.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. An apparatus notifies a user equipment (UE) of an upcoming multicast/broadcast of data intended for receipt by a group of UEs assigned a machine type communication (MTC) class. The UE has one or more MTC classes assigned to it and is configured to awake for the upcoming multicast/broadcast of data if the data to be broadcast corresponds to an MTC class assigned to the UE. The apparatus also multicasts/broadcasts the data intended for receipt by a group of UEs through at least one multicast/broadcast mechanism.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In a first configuration, the apparatus is an eNB. The eNB constructs an MCCH change notification, and sends the MCCH change notification with a carrier frequency index for a first frequency of a first cell on a second frequency of a second cell. In a second configuration, the apparatus is a UE. The UE receives a configuration with aggregated carriers including a primary carrier from a primary cell and one or more secondary carriers from one or more corresponding secondary cells, and receives an MCCH change notification with a carrier frequency index for a first frequency of a first cell on a second frequency of a second cell. The first cell and the second cell are each one of the primary cell and the secondary cells.
Abstract:
Compression of broadcast data packets is described in which a compressed broadcast data packet is formed by causing at least one field in a packet header to be excluded from the transmitted data packet. The data from the compressed or removed field is data that is otherwise available to a user entity. The user entity receives the compressed broadcast data packet and determines information corresponding to at least one of the eliminated fields in order to process the received broadcast information.
Abstract:
Apparatus, methods, and computer-readable media for facilitating a cloud-based vehicle XR user experience are disclosed herein. An example method for wireless communication at a user equipment (UE) includes transmitting a request for a vehicle extended reality (XR) session. The vehicle XR session may be based on a first user XR stream including a vehicle XR component associated with a vehicle and a first user XR component associated with a first user. The first user may have an association with the vehicle. The example method also includes transmitting uplink information associated with the first user XR stream. The example method also includes receiving rendering information associated with the first user XR stream. The rendering information may be based on the uplink information.
Abstract:
Systems, methods, and devices of the various embodiments provide for header extension preservation, security, authentication, and/or protocol translation for Multipath Real-Time Transport Protocol (MPRTP). Various embodiments include methods that may be implemented in a processor of a computing device for MPRTP transmission of Real-Time Transport Protocol (RTP) packets. Various embodiments may include receiving an RTP packet in which the received RTP packet may be part of an RTP stream that may be protected using secure RTP (SRTP), and applying an authentication signature to the RTP packet to authenticate an MPRTP header extension separate from a body of the RTP packet. Various embodiments may include sending and/or receiving MPRTP subflows of an MPRTP session in which a same security context may be applied across all MPRTP subflows of the MPRTP session.
Abstract:
Techniques for wireless communication at a user equipment (UE) are described. One method includes receiving, from a first access point using a first radio access technology (RAT), a configuration associated with a logical traffic connection, in which the configuration includes at least one parameter for communicating data associated with the logical traffic connection via a second access point associated with a second RAT; determining a buffer reporting value associated with the logical traffic connection based at least in part on a total amount of data buffered in a packet data convergence protocol (PDCP) queue associated with the logical traffic connection and the at least one parameter; and transmitting a buffer status report (BSR) including the buffer reporting value to the first access point.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a core network entity. The apparatus sends a request for a device identifier of a UE to the UE. The apparatus receives a response message including the device identifier of the UE from the UE. The apparatus determines to maintain, establish, terminate or prevent a connection with the UE through WLAN access based on the device identifier of the UE.
Abstract:
Aspects relate to a priority mechanism for prioritizing network identifiers, for example SSIDs. As described herein, a UE may obtain one or more network identifier sets, each of the one or more network identifier sets having one or more network identifiers for a first RAT and a priority level, determine one or more of the network identifier sets that are under control of a second RAT, and after the determining, manage connections to the first RAT based, at least in part, on the priority level of the network identifier sets.
Abstract:
A method, an apparatus, and a computer program product for wireless communication enable user equipment operating in a current cell that provides a multimedia broadcast/multicast service to distinguish between neighboring cells that have different operational characteristics. The presence of a neighboring cell is identified while the user equipment is operating in a first cell and it is determined whether the neighboring cell provides services different from the services provided in the current cell, based on information maintained by the user equipment. The user equipment may move to the neighboring cell to obtain better or different service.