Abstract:
A performance setting technique is disclosed for a clocked circuit such as a processor in an integrated circuit. The technique determines a maximum power consumption for the clocked circuit as a function of a total thermal resistance of a mobile device incorporating the integrated circuit. The total thermal resistance is a sum of a system thermal resistance for the mobile device and a device thermal resistance for the integrated circuit.
Abstract:
A package-on-package (PoP) device includes a first package, a second package, and a bi-directional thermal electric cooler (TEC). The first package includes a first substrate and a first die coupled to the first substrate. The second package is coupled to the first package. The second package includes a second substrate and a second die coupled to the second substrate. The TEC is located between the first die and the second substrate. The TEC is adapted to dynamically dissipate heat back and forth between the first package and the second package. The TEC is adapted to dissipate heat from the first die to the second die in a first time period. The TEC is further adapted to dissipate heat from the second die to the first die in a second time period. The TEC is adapted to dissipate heat from the first die to the second die through the second substrate.
Abstract:
A thermal controller for managing thermal energy of a multi-core processor is provided. The cores include a first core processing a load and remaining cores. The thermal controller is configured to determine that a temperature of the first core is greater than a first threshold, determine a temperature of a second core of the remaining cores in response to determining that the temperature of the first core is greater than the first threshold, and determine whether the temperature of the second core is greater than or less than a second threshold. The thermal controller is configured to transfer at least a portion of the load of the first core to the second core in response to determining that the temperature of the first core is greater than the first threshold and based on whether the temperature of the second core is greater than or less than the second threshold.
Abstract:
A method includes generating temperature information from a plurality of temperature sensors within a computing device; and processing the temperature information to generate voltage reduction steps based on an observed rate of change of the temperature information.
Abstract:
A method, an apparatus, and a computer program product for performance management are provided. The apparatus may be an electronic device. The electronic device detects a change of form factor mode or ambient wind using a detection circuit or at least one sensor. The change of form factor mode may include at least one of folding the electronic device, unfolding the electronic device, rolling the electronic device, changing a flexible shape of the electronic device, or equipping a cover on the electronic device. A set of thermal control parameters may be determined based on the detected change. The set of thermal control parameters may be retrieved from a lookup table or calculated using a mathematical model. The electronic device adjusts the performance based on the set of thermal control parameters.
Abstract:
A method includes generating temperature information from a plurality of temperature sensors within a computing device, wherein a first one of the temperature sensors is physically located at a first processing unit of the computing device; processing the temperature information to identify that the first temperature sensor is associated with temperature that is at or above a threshold; and assigning a processing thread to a first core of a plurality of cores of a second processing unit in response to identifying that the first temperature sensor is associated with temperature that is at or above the threshold and based at least in part on a physical distance between the first core and the first temperature sensor.
Abstract:
In one embodiment, a temperature management system comprises a plurality of temperature sensors on a chip, and a temperature manager. The temperature manager is configured to receive a plurality of temperature readings from the temperature sensors, to determine a plurality of power values based on the temperature readings, to determine a plurality of temperature values based on the determined power values, the determined temperature values corresponding to a plurality of different locations on the chip, and to estimate a temperature of a hotspot on the chip based on the determined temperature values.
Abstract:
A package-on-package (PoP) device includes a first package, a second package, and a bi-directional thermal electric cooler (TEC). The first package includes a first substrate and a first die coupled to the first substrate. The second package is coupled to the first package. The second package includes a second substrate and a second die coupled to the second substrate. The TEC is located between the first die and the second substrate. The TEC is adapted to dynamically dissipate heat back and forth between the first package and the second package. The TEC is adapted to dissipate heat from the first die to the second die in a first time period. The TEC is further adapted to dissipate heat from the second die to the first die in a second time period. The TEC is adapted to dissipate heat from the first die to the second die through the second substrate.
Abstract:
In one embodiment, a temperature management system comprises a plurality of thermal sensors at different locations on a chip, and a temperature manager. The temperature manager is configured to receive a plurality of temperature readings from the thermal sensors, to fit a quadratic temperature model to the received temperature readings, and to estimate a hotspot temperature on the chip using the fitted quadratic temperature model.
Abstract:
In one embodiment, a method of temperature control comprises receiving temperature readings from a temperature sensor on a chip, calculating one or more second derivatives of temperature with respect to time based on the temperature readings, and determining whether to perform temperature mitigation on the chip based on the one or more calculated second derivatives of temperature.