Abstract:
In an aspect, while a mobile device is operating in a RRC_Idle State, an RRC_Suspended State, an RLF State and/or an RLF Recovery Procedure State, the mobile device may transmit a connection establishment message to a base station of a plurality of base stations. In an aspect, the connection establishment message includes information that indicates whether the mobile device has information associated with signals transmitted by one or more base stations of the plurality of base stations. The mobile device may initiate transmission of the information associated with the signals to the base station subsequent to establishing a security context for the connection between the mobile device and the base station.
Abstract:
Certain aspects of the present disclosure relate to communication systems, and more particularly, to system information acquisition over bandwidth parts (BWPs) in communications system operating according to new radio (NR) technologies. In an exemplary method, a user equipment (UE) receives system information (SI) via a transmission in a downlink (DL) bandwidth part (BWP) of a system bandwidth and transmits, to a serving base station (BS) and in response to receiving the SI, an indication that the UE has completed SI acquisition.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment concurrently communicates with a source base station (BS) and a target BS on a connection with the source BS and a connection with the target BS as part of a make-before-break (MBB) handover procedure; and performs a common packet data convergence protocol (PDCP) function for the connection with the source BS and the connection with the target BS before the connection with the source BS is released as part of the MBB handover procedure. Numerous other aspects are provided.
Abstract:
Techniques described herein are directed toward enabling location support for 5G New Radio (NR) wireless access by a user equipment (UE) by utilizing existing LTE location support. More specifically, LTE positioning protocol (LPP) messages may be communicated between a UE with NR wireless access and a location server (e.g. an LMF) in a 5G Core Network via an NG-RAN. The LPP messages may support RAT-independent and E-UTRA position methods by the UE such as A-GNSS or OTDOA for E-UTRA. The location server may obtain OTDOA related information from eNBs and ng-eNBs supporting LTE wireless access. A UE may request measurement gaps from a 5G base station (e.g. gNB) in order to obtain measurements for RAT-independent and E-UTRA position methods and may request an idle period in order to obtain LTE timing needed for E-UTRA measurements.
Abstract:
Certain aspects of the present disclosure relate to techniques for secondary cell (SCell) configuration signaling and activation procedures. For example, certain aspects provide a method for configuring a plurality of secondary cells of a base station for a user equipment. The method includes receiving, at the user equipment from the base station, a message including at least one configuration parameter applicable to the plurality of secondary cells. The method further includes configuring the user equipment for the plurality of secondary cells based on the at least one configuration parameter.
Abstract:
In an embodiment, a drone-coupled UE transmits a message to a network component (e.g., eNB) of a terrestrial wireless communication subscriber network that identifies a drone-coupled capability information of the drone-coupled UE, the drone-coupled capability information being configured to indicate, to the network component, that the drone-coupled UE is capable of engaging in a flying state. The network component receives the message and determines that the drone-coupled UE is capable of engaging in a flying state based on the received message.
Abstract:
As wireless communication technology advances, the bandwidth usage of wireless communications systems becomes increasingly flexible. For example, different user equipment (UEs) may support different bandwidths or radio frequency capabilities. However, a scheduling entity may not know wireless capabilities or characteristics (e.g., supported bandwidths, RF chain configurations, reconfiguration times, and/or the like) of the UEs for which the scheduling entity is to manage communications, which may hamper the ability of the scheduling entity to take advantage of the advances in flexible bandwidth usage described above. Techniques for synchronization, scheduling, bandwidth allocation, and reference signal transmission in a wireless communications system associated with flexible bandwidth allocation, such as a 5G network, are described herein.
Abstract:
Aspects of the present disclosure provided techniques that for wireless communications by a user equipment (UE). An exemplary method, performed by a UE, generally includes obtaining a first system information message from a wireless network configured to utilize Multimedia Broadcast multicast service Single Frequency Network (MBSFN) subframes and non-MBSFN subframes, determining, based on the first system information message, a first set of valid subframes and a first set of non-MBSFN subframes, obtaining a second system information message from the wireless network based on the first set of valid subframes and the first set of non-MBSFN subframes, and accessing the wireless network based on the first system information message and the second system information message.
Abstract:
Certain aspects of the present disclosure relate to reporting difference in timing between cells using multiple connectivity in a wireless network. A first connection served by at least a first cell and a second connection served by at least a second cell to facilitate communicating with at least the first cell and at least the second cell are established. A reporting configuration specifying one or more parameters related to reporting a timing difference between cells is received. A timing difference between at least the first cell and at least the second cell is determined, and the timing difference is reported to at least the first cell over the first connection or to at least the second cell over the second connection. This can facilitate scheduling time aligned operations over the first and second cells, or related cell groups, in multiple connectivity.
Abstract:
Aspects include systems and methods for compressed direct current (DC) location reporting, such as DC location reporting in uplink (UL) carrier aggregation (CA) deployments in a wireless network. Various aspects may include a UE computing device determining and indicating DC locations only for a subset of a plurality of component carriers (CCs) in a channel bandwidth to a base station and/or a UE computing device determining and indicating DC locations for a subset of activation permutations for bandwidth parts (BWPs) of a plurality of CCs in a channel bandwidth that is less than all possible activation permutations of the BWPs of the plurality of CCs in the channel bandwidth.