Abstract:
Location-independent approaches are provided for determining, using a mobile device, whether a wireless transmitter has been moved to a new location. An example method includes obtaining at least a portion of a reference radio frequency (RF) signature database; measuring signals from a plurality of wireless transmitters proximate to the mobile device; identifying a candidate wireless transmitter; deriving an observed radio frequency (RF) signature for the candidate wireless transmitter from signals from at least one wireless transmitter of the plurality of wireless transmitters other than the candidate wireless transmitter; determining whether the candidate wireless transmitter has been moved to a new location by comparing the observed RF signature for the candidate wireless transmitter to a reference RF signature associated with the candidate wireless transmitter; and generating an indicator that the candidate wireless transmitter has been moved responsive to the candidate wireless transmitter having been moved.
Abstract:
Described are devices, methods, techniques and systems for locating a portable services access transceiver (PSAT) for use in aiding emergency “911” services. In one implementation, one or more conditions indicative of movement of a PSAT may initiate a process for obtaining a new estimated location of the PSAT. In another implementation, a location of a PSAT may be determined or updated using indoor navigation techniques.
Abstract:
An application executed within a mobile station to be triggered only by a network element, such as a mobile positioning center (MPC) or a Mobile Center (MC). The network element is coupled to a base station. The network element is responsible for authorizing an application that is either resident within the mobile station or that is run in a device that is resident elsewhere in the network. The mobile station communicates with the network element over a communication link through the base station and other infrastructure components. The mobile station will only respond to attempts to trigger particular operations (e.g., run particular applications) if the mobile station receives a short message services (SMS) message as defined by Interim Specification 637A (IS-637A) which is published by the Telecommunication Industry Association (TIA)/Electronics Industry Association (EIA). More specifically, that SMS message must include an SMS Teleservice Identifier that has a particular pre-assigned value.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a mobile device to display a map. Techniques are provided which may be implemented using various methods and/or apparatuses on a mobile device to display a map comprising a road segment associated with an uncertain driving condition associated with appropriate status information, and to determine whether the uncertain driving condition is due to a lack of data resulting from a lack of traffic or whether the uncertain driving condition is due to a road closure or comparable event.
Abstract:
Methods and apparatuses are provided for use with mode switchable navigation radios and the like. The methods and apparatuses may be implemented to selectively switch between certain operating modes based, at least in part, one or more determinations relating to one or more satellite positioning signals and/or space vehicles.
Abstract:
Methods, systems, computer-readable media, and apparatuses for using a smart meter as a reliable crowd-sourcing agent are presented. In some embodiments, a smart meter installed at a location may observe one or more wireless signals at the location. Subsequently, the smart meter may provide, to at least one signal almanac server, information that identifies the location and describes one or more detected properties of the one or more observed wireless signals. In at least one arrangement, the information provided to the at least one signal almanac server may be configured to be used by the at least one signal almanac server in providing position assistance information to one or more mobile devices located in a vicinity of the location.
Abstract:
Techniques for determining the position of a mobile device using almanac data are provided as are techniques for providing almanac data to the mobile device from a location server. The almanac data can be provided to the mobile device based on coarse location information provided by the mobile device. The almanac data can include information Media Access Control (MAC) addresses of one or more wireless access points and most recently used channel identification. The almanac data can also be binned by location by the location server and a subset of the almanac data can be selected to be provided to the mobile device based on the coarse location of the mobile device and on positioning effectiveness criteria associated with the wireless access points included in the almanac data.
Abstract:
An application executed within a mobile station to be triggered only by a network element, such as a mobile positioning center (MPC) or a Mobile Center (MC). The network element is coupled to a base station. The network element is responsible for authorizing an application that is either resident within the mobile station or that is run in a device that is resident elsewhere in the network. The mobile station communicates with the network element over a communication session through the base station and other infrastructure components. The mobile station initiates a mobile originated positioning session over a second communication session with a positioning assistance server.
Abstract:
An apparatus and method are disclosed for achieving receiver diversity. A wireless unit includes a plurality of antennas, an antenna selector to select one or more antennas from the plurality of antennas, a processor with input data from an inertial sensor for monitoring the orientation of the wireless unit. Based on the input data, the processor configures the antenna selector to select one or more antennas. In one aspect, the processor is a diversity processor. Based on the input data from the inertial sensor, the diversity processor computes the combination of the received signals. In another aspect, the wireless unit further includes a baseband processor to process the output of the diversity processor for a particular unit application.