Abstract:
A system, method, and computer device that selectively maintain an open interface to a communication control device that is controlling wireless communication to at least one of a plurality of wireless communication devices that are in a communication group, such as a push-to-talk (PTT) group. In one embodiment, the wireless communication device registers at the communication control device, such as a base station controller, and at least one interface is established between the communication control device and another computer device on the wireless communication network, such as a broadcast A10 interface with a broadcast serving node (BSN). The communication control device will then maintain the interface while the at least one wireless communication device, or at least one member device of the communication group, is registered such that group communications can more rapidly be delivered to the wireless communication device.
Abstract:
An access network determines to transmit multicast messages on a downlink shared channel. The access network receives a multicast registration message and a traffic channel request from at least one access terminal. The access network assigns a traffic channel to the at least one access terminal, and transmits the multicast messages on the downlink shared channel. In another example, the access network can determine a channel type upon which the support a multicast session, can indicate the channel type selection to the at least one access terminal in an announce message and can then transmit the multicast messages for the multicast session on the selected channel type. The at least one access terminal receives the announce message, requests a traffic channel and receives a traffic channel assignment, registers to the multicast session and monitors the downlink shared channel for multicast messages.
Abstract:
In an embodiment, an access terminal sends a multicast session registration request to an access network. The access network determines whether to assign a unicast traffic channel (e.g., media access control (MAC) identifier (ID)) to the access terminal, for the access terminal to provide feedback (e.g., channel quality indicators (CQIs) associated with the multicast session, based on a number of access terminals that have been assigned unicast traffic channels for the multicast session and/or for applications other than the multicast session. The access network configures a traffic channel assignment message to include an identifier for the multicast session, and to further include an assignment of the unicast traffic channel if the determining step determines to assign the unicast traffic channel to the access terminal. The access network sends the traffic channel assignment message to the access terminal including at least the multicast session identifier.
Abstract:
Methods in a multiple-cell cellular network that implements iterative coordinated beamforming (I-CBF) algorithms with limited cooperation from adjacent nodes (base stations and/or mobile stations) may jointly determine transmit beamforming vectors and receive combining vectors to increase sum throughput. The transmit beamforming vectors and receive combining vectors can be determined based on a performance metric, such as by maximizing SINR (signal-to-interference-and-noise ratio) for each mobile station in the network, maximizing SLNR (signal-to-leakage-and-noise ratio) for each base station in the network, or minimizing SMSE (sum mean square error). The algorithms may be performed to update vectors synchronously. In other cases, the algorithms may be performed to update vectors asynchronously.
Abstract:
Methods and systems for sending multicast messages are disclosed. A multicast message is received to be transmitted to a plurality of access terminals at a radio access network (RAN), the received multicast message having a first format. The first format may correspond to a conventional multicast message format. The RAN determines whether the received multicast message requires special handling. If the RAN determines the received multicast message requires special handling, the radio access network converts the received multicast message from the first format into a second format. The RAN transmits the converted multicast message with the second format (e.g., a data over signaling (DOS) message) on a control channel to at least one of the plurality of access terminals. The access terminals receiving the converted multicast message interpret the message as a multicast message.
Abstract:
A method of coordinating a small cell with a plurality of small cells includes estimating backhaul bandwidth and backhaul bandwidth utilization of the small cell; estimating aggregate bandwidth utilization for the small cell and the plurality of small cells based on the estimated backhaul bandwidth utilization for each of the small cells; selecting the small cell as a cluster head for a cluster of the small cells based on the estimated aggregate backhaul bandwidth utilization, the cluster including at least some of the small cells; and communicating, via the cluster head, information between a network entity and the small cells of the cluster.
Abstract:
Aspects of the disclosure are directed to interference cancellation and wireless communication. A method of performing analog interference cancellation in a wireless communications device having a transmitter and a receiver includes receiving a reference signal representative of an interfering signal transmitted by the transmitter, selecting a first target interference type from one of a plurality of interference types affecting a an RF signal received by the receiver, configuring a first filter of an interference cancellation circuit using a coefficient computed based on the first target interference type, and cancelling interference in the RF signal using an output of the first filter. Coefficient computation may be performed in a switched manner between analog and digital domain, simultaneously in multiple domains, or in a cascaded manner that provides digital interference cancellation.
Abstract:
One aspect of an apparatus for wireless communications is disclosed. The apparatus includes a controller, a first transceiver, and a second transceiver. The first transceiver is configurable by the controller to support first communications through a cellular network to at least one of a packet-based network and a circuit-switched network. The second transceiver configurable by the controller to operate with the first transceiver to support first communications through the cellular network in a first mode and support second communications through an access point to the packet-based network in a second mode. In an aspect, the second transceiver is further configured to switch from the first mode to the second mode by moving its wireless connection from the cellular network to the access point while maintaining a network-layer connection to the cellular network.
Abstract:
An access network (AN) receives a call announcement message for transmission to an access terminal (AT). The AN initiates, in response to the received call announcement message, a physical-layer synchronization procedure for at least one channel between the AN and the AT, the physical-layer synchronization procedure associated with a transition of the access terminal to a dedicated channel state. The AN performs the initiation by sending a message to the AT. In response to the message, the AT monitors a downlink channel for receipt of the call announcement message. The AN then transmits the call announcement message on the downlink channel to the access terminal, and the AT receives the call announcement message due to the monitoring. The call announcement message is transmitted either (i) before the physical layer synchronization procedure completes or (ii) before a transmission of a reconfiguration complete message indicating completion of dedicated channel state transition.
Abstract:
In a network node, wireless device, or both, a method for controlling activation or deactivation of a small cell activity of a portable multi-purpose wireless device in a wireless communications network may include determining a geographic location of a portable multi-purpose wireless device. The device may be capable of two or more different states of small cell activity, including an activated state, a deactivated state, or a latent state. The method may include controlling a current one of the two or more different states of the small-cell capability of the portable multi-purpose wireless device, based at least in part on the geographic location. The network node, the wireless device, or both may activate or deactivate the small cell activity, or place it into a latent state, based on additional factors. In addition to its small cell capabilities, the wireless device may perform user function unrelated to the wireless network.