Abstract:
A power transmitting device includes: an inverter circuit; a power transmitting antenna connected to the inverter circuit, and being electromagnetically coupled to a power receiving antenna in a power receiving device to wirelessly transmit electric power thereto; a detector to detect an output voltage and an output current of the inverter circuit; and a control circuit to control the inverter circuit. The control circuit consecutively drives the inverter circuit at a plurality of frequencies, determines from among the plurality of frequencies a frequency at which a phase difference that is indicative of a lag of a phase of the output current relative to a phase of the output voltage becomes largest, and performs power transmission by driving the inverter circuit at an operating frequency that is based on the determined frequency.
Abstract:
A power transmission device includes an inverter using a frequency f11 lower than a frequency f0 between a first resonator and a second resonator or a frequency f12 higher than the frequency f0 to generate a first power; an oscillator using a frequency f10 lower than a frequency fr between the first resonator and the second resonator or a frequency f20 higher than the frequency fr to generate a second power; and a power transmission control circuitry setting a foreign object detection period between first and second transmission periods, using the frequency f11 or frequency f12 in the first transmission period, using the frequency f10 or frequency f20 in the foreign object detection period, and if it is determined that a substance is present in the foreign object detection period, transmitting power in the second transmission period at a frequency different from the frequency used in the first transmission period.
Abstract:
A foreign object detector detects a metallic foreign object between a first resonator and a second resonator which is composed of a parallel resonant circuit including a coil and a capacitor. The foreign object detector includes the first resonator; an oscillator circuit capable of oscillating at a first frequency (f1) which is lower than a resonant frequency (fr) of the second resonator and at a second frequency (f2) which is higher than the resonant frequency (fr); and a measurement circuit to measure changes in input impedance of the first resonator. The measurement circuit detects a metallic foreign object between the first resonator and the second resonator based on: changes in input impedance of the first resonator as measured by the measurement circuit while the oscillator circuit is oscillating at the first frequency f1; and changes in input impedance of the first resonator as measured by the measurement circuit while the oscillator circuit is oscillating at the second frequency f2.
Abstract:
A wireless power transmission system according to the present disclosure includes: a pair of antennas, between which power is transmissible wirelessly by resonant magnetic coupling at a frequency f0, one of which is a series resonant circuit, and the other of which is a parallel resonant circuit; and a control section, which controls a transmission frequency according to the magnitude of the power being transmitted between the antennas. If the power transmitted between the antennas is greater than a reference value P1, the control section sets the transmission frequency to be a value that falls within a first level range that is higher than the frequency f0. But if the power is smaller than the reference value P1, then the control section sets the transmission frequency to be a value that falls within a second level range that is lower than the first level range.
Abstract:
Power transmission is properly stopped before an electrical storage device becomes fully charged. A power transmitting device includes two transmission electrodes and a power transmitting circuit to supply AC power to the two transmission electrodes. The power receiving device includes: two reception electrodes being respectively opposed to the two transmission electrodes to receive the AC power from the two transmission electrodes; a power receiving circuit to convert the AC power received by the two reception electrodes into DC power and to output the DC power; a charge-discharge control circuit to control charging and discharging of the electrical storage device; and an impedance adjustment circuit to change an input impedance in accordance with a charge state of the electrical storage device as detected by the charge-discharge control circuit. In response to a change in at least one of voltage and current occurring due to a change in the input impedance during power transmission, the power transmitting circuit stops supply of the AC power.
Abstract:
A novel method and device for treating a liquid are provided, wherein a concentrated liquid recovered using a centrifugal separation method can be utilized as ballast water. The present disclosure relates to a method for treating a liquid that comprises a storage step including carrying out a physical treatment using a centrifugal force with respect to a supply liquid to be supplied to a storage means located inside a housing, wherein the method comprises carrying out an aquatic organism-inactivating treatment contained in a concentrated liquid obtained by the physical treatment using a centrifugal force and supplying to the storage means the concentrated liquid subjected to the aquatic organism-inactivating treatment.
Abstract:
A battery pack for use in an electric machine, includes a first receiving antenna including a first inductor for receiving electric power from a power supply source located outside the electric machine by coupling with a first resonant magnetic field generated by the power supply source; and a transferring antenna including a second inductor for generating a second resonant magnetic field by the radio-frequency power. A primary surface of the first inductor is located within the battery pack and is parallel to a first plane of the battery pack. A primary surface of the second inductor is located within the battery pack and is parallel to a second plane of the battery pack. The second plane facing the second inductor intersects with the first plane facing the first inductor at an angle of a range of between 45° and 90° including 45° and 90°.