Abstract:
A power transmission apparatus oscillates alternating current power at a first frequency (f1) which is lower than a resonant frequency (fr) of the second resonator and at a second frequency (f2) which is higher than the resonant frequency (fr). The power transmission apparatus measures an inductance value Lin (f1) and an inductance value Lin (f2). The inductance value Lin (f1) is measured when the oscillation circuit oscillates alternating current power at the first frequency (f1), and the inductance value Lin (f2) is measured when the oscillation circuit oscillates alternating current power at the second frequency (f2). The power transmission apparatus calculates a coupling coefficient k by using an expression represented by k2=1−Lin(f2)/Lin(f1), to detect relative position of the second resonator to the first resonator on the basis of the coupling coefficient k.
Abstract:
A contactless connector apparatus is provided with a first coil closely opposed to a second coil so as to be electromagnetically coupled thereto. The first coil includes: an inner transmitter coil wound around an axis passing through its center; and an outer transmitter coil wound around the axis and outside the inner coil. One end of the outer transmitter coil is connected to one end of the inner transmitter coil such that, when a current flows through the transmitter coils, a direction of a loop current generated around the axis by a current flowing through the inner transmitter coil is opposite to that of a loop current generated around the axis by a current flowing through the outer transmitter coil. A self-inductance of the outer transmitter coil is larger than that of the inner transmitter coil.
Abstract:
A coupled inductor includes: a magnetic body; a first conductor provided at least partially inside the magnetic body; and a second conductor provided at least partially inside the magnetic body and coupled to the first conductor. The magnetic body includes: a first surface and a second surface facing away from each other; and a third surface and a fourth surface facing away from each other and orthogonal to the first surface and the second surface. The first conductor includes: a first terminal provided at the first surface; and a second terminal provided at the second surface. The second conductor includes: a third terminal provided at the third surface; and a fourth terminal provided at the fourth surface.
Abstract:
A power transmission device includes an inverter using a frequency f11 lower than a frequency f0 between a first resonator and a second resonator or a frequency f12 higher than the frequency f0 to generate a first power; an oscillator using a frequency f10 lower than a frequency fr between the first resonator and the second resonator or a frequency f20 higher than the frequency fr to generate a second power; and a power transmission control circuitry setting a foreign object detection period between first and second transmission periods, using the frequency f11 or frequency f12 in the first transmission period, using the frequency f10 or frequency f20 in the foreign object detection period, and if it is determined that a substance is present in the foreign object detection period, transmitting power in the second transmission period at a frequency different from the frequency used in the first transmission period.
Abstract:
A foreign object detector detects a metallic foreign object between a first resonator and a second resonator which is composed of a parallel resonant circuit including a coil and a capacitor. The foreign object detector includes the first resonator; an oscillator circuit capable of oscillating at a first frequency (f1) which is lower than a resonant frequency (fr) of the second resonator and at a second frequency (f2) which is higher than the resonant frequency (fr); and a measurement circuit to measure changes in input impedance of the first resonator. The measurement circuit detects a metallic foreign object between the first resonator and the second resonator based on: changes in input impedance of the first resonator as measured by the measurement circuit while the oscillator circuit is oscillating at the first frequency f1; and changes in input impedance of the first resonator as measured by the measurement circuit while the oscillator circuit is oscillating at the second frequency f2.
Abstract:
A power conversion system configured to determine whether or not an abnormality is present in a power conversion circuit, and diagnosis method and program for the power conversion circuit are provided. A power conversion system includes a power conversion circuit, a snubber circuit, and a diagnosis unit. The power conversion circuit includes a transformer and a switching element configured to be electrically connected to the transformer, and the power conversion circuit is configured to convert electric power. The snubber circuit is electrically connected to the transformer and is configured to extract electrical energy from the power conversion circuit. The diagnosis unit is configured to make diagnosis for the power conversion circuit in accordance with at least one of a voltage at a terminal of the transformer, a voltage generated at the snubber circuit, or a current generated at the snubber circuit.
Abstract:
A power conversion system according to the present disclosure includes a plurality of power converters for performing power conversion on AC power and is connected to a power grid of multi-phase power that is a combination of multiple alternating current sources with mutually different phases. Each of the plurality of power converters includes a power converter circuit, a setting unit, and a control circuit. The power converter circuit performs power conversion between either DC power or AC power and AC power supplied from any of the multiple alternating current sources. The setting unit selects one of the multiple alternating current sources as a target of the power conversion to be performed by the power converter circuit. The control circuit controls operation of the power converter circuit in accordance with selection made by the setting unit.
Abstract:
A power transmission device includes an inverter, an oscillator, a foreign substance detector, and a power transmission control circuitry. The power transmission control circuitry causes the foreign substance detector to perform a series of multiple processes and determine whether a foreign substance is present before a transmission of first AC power starts, and then causes the inverter to start the transmission of the first AC power. After the transmission starts, a detection period in which foreign substance detecting is performed and a power transmission period in which transmission of the first AC power is performed are repeated. The series of multiple processes is divided and performed in the multiple repeated detecting periods. The foreign substance detector is caused to divide and perform the series of multiple processes using the detecting periods and determine whether a foreign substance is present.
Abstract:
A power transmitting antenna includes a first resonant circuit including a power transmitting coil, a power receiving antenna includes a second resonant circuit including a power receiving coil. When the power transmitting antenna and the power receiving antenna are electromagnetically coupled to each other, the power transmitting antenna and the power receiving antenna have an odd-mode resonance frequency corresponding to an odd-mode resonant condition, and an even-mode resonance frequency corresponding to an even-mode resonant condition, and the even-mode resonance frequency is higher than the odd-mode resonance frequency. A wireless power transmitting apparatus is provided with a power transmitting circuit configured to generate high-frequency power at a variable frequency, and supply the high-frequency power to the power transmitting antenna. A control circuit sets the frequency of the high-frequency power generated by the power transmitting circuit to one of the odd-mode resonance frequency and the even-mode resonance frequency.
Abstract:
A foreign object detector includes: an oscillator circuit 100 having a coil 110 and resonant capacitors Cx, Cy, the oscillator circuit 100 being configured to output a voltage which includes an AC component and a DC component, the AC component having a positive cycle and a negative cycle; and an electric circuit for sensing a variation of the AC component and a variation of the DC component in the voltage output from the oscillator circuit 100 when a foreign object approaches the coil 110.