Abstract:
An imaging system with on-chip phase-detection includes an image sensor with symmetric multi-pixel phase-difference detectors. Each symmetric multi-pixel phase-difference detector includes (a) a plurality of pixels forming an array and each having a respective color filter thereon, each color filter having a transmission spectrum and (b) a microlens at least partially above each of the plurality of pixels and having an optical axis intersecting the array. The array, by virtue of each transmission spectrum, has reflection symmetry with respect to both (a) a first plane that includes the optical axis and (b) a second plane that is orthogonal to the first plane. The imaging system includes a phase-detection row pair, which includes a plurality of symmetric multi-pixel phase-difference detectors in a pair of adjacent pixel rows and a pair, and an analogous phase-detection column pair.
Abstract:
In some embodiments, an image sensor is provided. The image sensor comprises a plurality of photodiodes arranged as a photodiode array. The photodiodes of the photodiode array are arranged into a first quadrant, a second quadrant, a third quadrant, and a fourth quadrant. A first polarization filter and a first telecentric lens are aligned with the first quadrant. A second polarization filter and a second telecentric lens are aligned with the second quadrant. A third polarization filter and a third telecentric lens are aligned with the third quadrant. A fourth telecentric lens is aligned with the fourth quadrant.
Abstract:
An image sensor pixel comprises a subpixel and a polarization pixel. The subpixel includes a group of photodiodes disposed in semiconductor material, a shared microlens optically aligned over the group of photodiodes, and a subpixel color filter disposed between the group of photodiodes and the shared microlens. The polarization pixel includes a first photodiode disposed in the semiconductor material, an unshared microlens optically aligned over the first photodiode, and a polarization filter disposed between the first photodiode and the unshared microlens. The shared microlens has a first lateral area. The unshared microlens has a second lateral area less than the first lateral area of the shared microlens.
Abstract:
An image sensor pixel includes a plurality of photodiodes, a shared microlens, and a plurality of microlenses. The plurality of photodiodes are arranged as a photodiode array with each of the plurality of photodiodes disposed within a semiconductor material. The shared microlens is optically aligned with a group of neighboring photodiodes included in the plurality of photodiodes. Each of the plurality of microlenses are optically aligned with an individual one of the plurality of photodiodes other than the group of neighboring photodiodes. The plurality of microlenses laterally surrounds the shared microlens.
Abstract:
In some embodiments, an image sensor is provided. The image sensor comprises a plurality of photodiodes arranged as a photodiode array. The plurality of photodiodes includes a first set of photodiodes configured as phase detection photodiodes, and a second set of photodiodes configured as polarization detection photodiodes. In some embodiments, a controller is provided. The controller comprises circuitry configured to process signals from a first set of photodiodes of a photodiode array to obtain depth information; process signals from a second set of photodiodes of the photodiode array to obtain polarization information; process the polarization information to obtain an ambiguous set of surface normals; and process the ambiguous set of surface normals using the depth information to obtain a three-dimensional shape image.
Abstract:
In some embodiments, an image sensor is provided. The image sensor comprises a plurality of photodiodes arranged as a photodiode array. The plurality of photodiodes includes a first set of photodiodes configured as phase detection photodiodes, and a second set of photodiodes configured as polarization detection photodiodes. In some embodiments, a controller is provided. The controller comprises circuitry configured to process signals from a first set of photodiodes of a photodiode array to obtain depth information; process signals from a second set of photodiodes of the photodiode array to obtain polarization information; process the polarization information to obtain an ambiguous set of surface normals; and process the ambiguous set of surface normals using the depth information to obtain a three-dimensional shape image.
Abstract:
An image sensor includes a plurality of photodiodes, a plurality of color filters, and a plurality of microlenses. The plurality of photodiodes are arranged as a photodiode array, each of the plurality of photodiodes disposed within respective portions of a semiconductor material with a first lateral area. The plurality of color filters are arranged as a color filter array optically aligned with the photodiode array. Each of the plurality of color filters having a second lateral area greater than the first lateral area. The plurality of microlenses are arranged as a microlens array optically aligned with the color filter array and the photodiode array. Each of the plurality of microlenses have a third later area greater than the first lateral area and less than the second lateral area.
Abstract:
An image sensor for on-chip phase detection includes a pixel array for capturing an image of a scene, wherein the pixel array has a plurality of horizontal phase-detection rows, each including phase-detection pixels for detecting horizontal change in the scene, and a plurality of vertical phase-detection columns, each including phase-detection pixels for detecting vertical change in the scene, and wherein each of the horizontal phase-detection rows intersects each of the vertical phase-detection columns. A phase-detection method includes generating a pair of horizontal line profiles using one of a plurality of phase-detection rows; generating a pair of vertical line profiles using one of a plurality of phase-detection columns intersecting with the one of a plurality of phase-detection rows; and determining phase shift associated with at least one arbitrarily oriented edge in a scene, based upon the pair of horizontal line profiles and the pair of vertical line profiles.
Abstract:
A method and apparatus for embedding a digital watermark in image content that is not visible to the human eye is performed on single-sensor digital camera images (often called ‘raw’ images) from a pixel-array. The raw image is transformed to generate preprocessed image coefficients, a watermark message is encrypted using a first key; the encrypted watermark message is randomized using a second key to form a watermark; and the watermark is embedded in randomly selected preprocessed image coefficients.
Abstract:
Quad photodiode microlens arrangements, and associated systems and methods. In one embodiment, a plurality of pixels are arranged in rows and columns of a pixel array disposed in a semiconductor material. The plurality of pixels includes green (G) pixels, red (R) pixels, blue (B) pixels and clear (C) pixels. Each pixel comprises a plurality of photodiodes that are configured to receive incoming light through an illuminated surface of the semiconductor material. A plurality of small microlenses are distributed over individual photodiodes of clear (C) pixels. A plurality of large microlenses are distributed over individual green (G) pixels. A diameter of the small microlenses is smaller than a diameter of the large microlenses.