Abstract:
An image sensor comprises: a control block generating a video interface enabled signal, a video interface for receiving the video interface enabled signal, a pixel array for providing a video stream to the video interface, an output port for receiving the video stream from the video interface and outputting the video stream to outside of the image sensor, a stream indicator pin for receiving the video interface enabled signal from the control block when the video interface is receiving the video interface enabled signal from the control block, where a terminal of the video interface receiving the video interface enabled signal is connected to the stream indicator pin by a conductor, and they are sealed in a package of the image sensor.
Abstract:
A method of reading pixel data from a pixel array includes exposing each one of a plurality of regions of pixels a respective exposure time. Pixel data is read from the plurality of regions of pixels. The pixel data is interpolated from a first one of the plurality of regions of pixels to determine the pixel data of the regions of pixels other than the first one of the plurality of regions of pixels to generate a first image having the first exposure time. The pixel data is interpolated from the second one of the plurality of regions of pixels to determine the pixel data of the regions of pixels other than the second one of the plurality of regions to generate a second image having the second exposure time. The images are combined to produce a high dynamic range image.
Abstract:
Generating an image with an imaging system includes capturing a first sub-image during a first exposure with a first pixel subset of an image sensor of the imaging system, capturing a second sub-image during a second exposure with a second pixel subset of the image sensor, capturing a third sub-image during a third exposure with a third pixel subset of the image sensor, and capturing a fourth sub-image during a fourth exposure with a fourth pixel subset of the image sensor. The first, second, third, and fourth exposures have different durations. A preferred exposure is selected from between the first, second, third and fourth exposures by analyzing the first, second, third, and fourth sub-images. Then, a full-resolution image is captured at the preferred exposure. An HDR image is generated based on the full-resolution image and the sub-images.
Abstract:
A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
Abstract:
An image sensor includes a plurality of pixels that is arranged in a matrix and each of which outputs a signal in response to incident light, wherein readout of data can be performed with respect to the plurality of pixels, and simultaneous readout of data of a plurality of columns of pixels can be performed, and at least one pixel of the plurality of columns of pixels to be read simultaneously can be read for phase detection with respect to each of divided sub-pixels. The image sensor is configured to, with n rows as a readout unit where a is an integer of 2 or more, perform readout for at least one sub-pixel of at least one pixel in one readout cycle within the readout unit, perform readout for each pixel including phase detection readout for the other sub-pixel of the at least one pixel in which the at least one sub-pixel has been read in the one readout cycle, in another readout cycle within the readout unit, and end the readout for the readout unit with the n+1 readout cycles.
Abstract:
An image sensor includes a photodiode array and a color filter array optically aligned with the photodiode array. The photodiode array includes a plurality of photodiodes disposed within respective portions of a semiconductor material. The color filter array includes a plurality of color filters arranged to form a plurality of tiled minimal repeating units. Each minimal repeating unit includes at least a first color filter with a red spectral photoresponse, a second color filter with a yellow spectral photoresponse, and a third color filter with a panchromatic spectral photoresponse.
Abstract:
An optical system comprises an imaging lens for imaging an object to an image and a sensing pixel array for detecting lights from the object toward the image. The sensing pixel array comprises a first sensing pixel and a second sensing pixel, each sensing pixel comprising a microlens covering a one-dimensional series of photodiodes having n photodiodes. A photodiode at an end of the one-dimensional series of photodiodes of the first sensing pixel detects a first light from the object toward the image, and a photodiode at an opposite end of the one-dimensional series of photodiodes of the second sensing pixel detects a second light from the object toward the image, where the first light and the second light pass opposite parts of the imaging lens.
Abstract:
An image sensor includes a pixel array including a plurality of pixels. A bit line coupled to a column of pixels is separated in to a plurality of electrically portions that are coupled to corresponding portions of rows of the pixel array. A first switching circuit of a readout circuit is coupled to the bit line. A first switching circuit is configured to couple a bit line current source to the bit line to provide a DC current coupled to flow through the bit line and through the first switching circuit during a readout operation of a pixel coupled to the bit line. A second switching circuit is configured to couple and ADC to the bit line during the readout operation of the pixel. Substantially none of the DC current provided by the bit line current source flows through the second switching circuit during the readout operation of the pixel.
Abstract:
A method includes reading a first analog reference signal from a first storage node in a dual conversion gain pixel, and converting the first analog reference signal to a first digital reference signal using a comparator coupled to the dual conversion gain pixel. The method also includes reading a first analog image signal from the first storage node, and converting the first analog image signal to a first digital image signal using the comparator. A second analog image signal may be read from the first storage node and a second storage node in the dual conversion gain pixel, and the second analog image signal may be converted to a second digital image signal. A second analog reference signal may be read from the first storage node and the second storage node, and the second analog reference signal may be converted to a second digital reference signal using the comparator.
Abstract:
A method includes reading a first analog reference signal from a first storage node in a dual conversion gain pixel, and converting the first analog reference signal to a first digital reference signal using a comparator coupled to the dual conversion gain pixel. The method also includes reading a first analog image signal from the first storage node, and converting the first analog image signal to a first digital image signal using the comparator. A second analog image signal may be read from the first storage node and a second storage node in the dual conversion gain pixel, and the second analog image signal may be converted to a second digital image signal. A second analog reference signal may be read from the first storage node and the second storage node, and the second analog reference signal may be converted to a second digital reference signal using the comparator.