Abstract:
A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
Abstract:
A method determines a pixel value in a high dynamic range image from two images of different brightness by obtaining corresponding input pixel intensities from the two images, determining combination weights, and calculating the pixel value in the high dynamic range image as a weighted average of the input pixel intensities. Another method determines a pixel value in a high dynamic range image from more than two images by forming pairs of corresponding input pixel intensities, determining relative combination weights for the input pixels intensities for each pair, applying a normalization condition to determine absolute combination weights, and calculating the pixel value in the high dynamic range image as a weighted average of the input pixel intensities. Systems for generating high dynamic range image generation from two or more input images include a processor, a memory, a combination weight module, and a pixel value calculation module.
Abstract:
A method for combining array camera images with feature-based ghost removal includes (a) receiving, from an array camera, a first image and a second image respectively captured by a first camera and a second camera of the array camera, (b) rectifying and aligning the first image and the second image, (c) after said rectifying and aligning, identifying features in the first image to produce at least one first feature image each indicating features in the first image, and identifying features in the second image to produce at least one second feature image each indicating features in the second image, (d) comparing the at least one first feature image with the at least one second feature image to determine a ghost mask defining combination weights for combination of the first image with the second image.
Abstract:
Embodiments of a color filter array include a plurality of tiled minimal repeating units, each minimal repeating unit comprising an M×N set of individual filters, and each individual filter in the set having a photoresponse selected from among four different photoresponses. Each minimal repeating unit includes a checkerboard pattern of filters of the first photoresponse, and filters of the second, third, and fourth photoresponses distributed among the checkerboard pattern such that the filters of the second, third, and fourth photoresponses are sequentially symmetric about one or both of a pair of orthogonal axes of the minimal repeating unit.
Abstract:
A lane detection system includes a non-volatile memory storing machine-readable instructions and an image processor capable of receiving a road image. The image processor, when executing the machine-readable instructions, is capable of: (i) processing the road image to identify a lane candidate within a lane-existing region of the road image, the lane-existing region having (a) a near subregion including an imaged road region nearer to the vehicle and (b) a far subregion including an imaged road region farther from the vehicle, (ii) verifying the lane candidate as a true lane candidate when a minimum distance between (a) a line fit to a portion of the lane candidate in the near subregion and (b) a predetermined reference point in the road image is less than a neighborhood distance; and (iii) extending the true lane candidate into the far subregion to form a detected lane marker demarcating the lane marker.
Abstract:
A method determines a pixel value in a high dynamic range image from two images of different brightness by obtaining corresponding input pixel intensities from the two images, determining combination weights, and calculating the pixel value in the high dynamic range image as a weighted average of the input pixel intensities. Another method determines a pixel value in a high dynamic range image from more than two images by forming pairs of corresponding input pixel intensities, determining relative combination weights for the input pixels intensities for each pair, applying a normalization condition to determine absolute combination weights, and calculating the pixel value in the high dynamic range image as a weighted average of the input pixel intensities. Systems for generating high dynamic range image generation from two or more input images include a processor, a memory, a combination weight module, and a pixel value calculation module.
Abstract:
A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
Abstract:
An example method of multi-target automatic exposure and gain control based on pixel intensity distribution includes capturing a series of digital images with an image sensor. As the series of digital images are captured, exposure time and/or gain are adjusted to adjust a mean intensity value of the digital images until a target mean intensity value is reached. The method includes dynamically selecting the target mean intensity value from a plurality of target mean intensity values based on a relative number of pixels, in each captured digital image, that have an intensity value that falls outside a range of intensity values.
Abstract:
An image sensor includes an array of light sensitive elements and a filter array. Each filter element is in optical communication with a respective light sensitive element. The image sensor receives filtered light having a repeating pattern. Light sensitive elements in at least two successive rows alternately receive light having a first color and a second color, and light sensitive elements in common columns of the successive rows alternately receive light having the first color and the second color. Light sensitive elements in at least two additional successive rows alternately receive light having a third and a fourth color, and light sensitive elements in common columns of the additional successive rows alternately receive light having the third color and the fourth color. Output values of pairs of sampled light sensitive elements receiving light of a common color and from successive rows are combined to generate a down-sampled image.
Abstract:
A method for combining array camera images with feature-based ghost removal includes (a) receiving, from an array camera, a first image and a second image respectively captured by a first camera and a second camera of the array camera, (b) rectifying and aligning the first image and the second image, (c) after said rectifying and aligning, identifying features in the first image to produce at least one first feature image each indicating features in the first image, and identifying features in the second image to produce at least one second feature image each indicating features in the second image, (d) comparing the at least one first feature image with the at least one second feature image to determine a ghost mask defining combination weights for combination of the first image with the second image.