Abstract:
The present invention provides an erythrocyte-culture monitoring device including a light source that radiates monochromatic light onto a culture solution culturing erythrocytes accommodated in a culture container, a first photodetector that detects a light intensity of the monochromatic light transmitted through the culture solution, and a controller that evaluates an amount of hemoglobin in the culture solution based on a temporal change in the light intensity detected by the photodetector.
Abstract:
An endoscope apparatus includes: a light source unit that emits white illumination light or narrow band illumination light; an image sensor having pixels; a filter unit arranged corresponding to the pixels and including filters having a filter for passing blue light, and a filter for passing the blue light and one of green light and red light, the number of the filters for passing the green light being not less than half of the number of all the filters of the filter unit, and the number of the filters for passing the blue light being not less than the number of the filters for passing the green light; a selecting unit that selects, from the pixels, a luminance component pixel depending on types of illumination light; and a demosaicing processing unit that generates a color image signal having color components based on the luminance component pixel.
Abstract:
Provided is a culture-medium-monitoring apparatus including: an optical measurement unit that includes an illumination light source and a collecting lens that radiate an illumination light onto a culturing liquid, a retroreflective member that has an array in which micro-reflective elements are arrayed, that is disposed so as to sandwich the vessel between the retroreflective member, and the illuminating light source and the collecting lens, and that reflects the illumination light passed through the culturing liquid in the vessel, and a light detector that detects an intensity of the illumination light passed through the culturing liquid in the vessel after being reflected by the retroreflective member; and a control portion that causes the intensity of the illumination light to be repeatedly detected at a prescribed timing, and that determines a state of the culturing liquid on the basis of a change over time in the intensity of the illumination light.
Abstract:
An image processing apparatus interpolates a signal of a missing color component based on first, second, and third color signals respectively generated by first, second, and third pixels of an image sensor, to generate color signals. These pixels are arranged in a matrix. The first pixels generate the first color signal of a first luminance component of white light. The second pixels generate the second color signal of a second luminance component of narrow band light. Density of the first pixels being higher than density of the second pixels and density of the third pixels. The apparatus extracts a specific frequency component signal from a color signal of the first luminance component among the color signals generated by interpolation, and adds the specific frequency component signal to a color signal of a color component different from the first luminance component depending on white light imaging or narrow band imaging.
Abstract:
An image sensor includes first and second pixels to generate a first electric signal from white illumination light and second electric signals from narrow band illumination light, respectively. Density of the first pixels is higher than density of each color components of the second pixels. An image processing apparatus is configured to: interpolate the first electric signal based on the first pixels surrounding the second pixels to generate an interpolated electric signal; calculate a difference between the interpolated electric signal and the second electric signals to generate a color difference signal; discriminate an interpolation direction based on the color difference signal to interpolate a missing color difference signal at each pixel position, thereby generating an interpolated color difference signal; and generate the second electric signals to be generated by the second pixels, based on the interpolated color difference signal and the interpolated electric signal.
Abstract:
The endoscope apparatus includes an image acquisition section (image composition processing section) that acquires a captured image in a zoom observation state in time series, the zoom observation state being an observation state in which a magnification of an optical system is higher than that in a normal observation state, a defocus amount information extraction section (texture extraction section) that extracts defocus amount information from the captured image in the zoom observation state, and a defocus amount correction section (texture correction amount calculation section, texture correction section, and blending section) that corrects the captured image based on the extracted defocus amount information.
Abstract:
A laser microscope includes an objective lens that radiates a laser beam onto a specimen; a stimulation optical system having an LCOS-SLM located at a position optically conjugate with the pupil position of the objective lens and which modulates the phase of the laser beam; and an observation optical system having a galvanometer mirror that scans the laser beam across the specimen, as observation illuminating light, and a PMT that detects the observation light coming from the specimen and collected by the objective lens. A control unit forms a three-dimensional image of the specimen and sets, in that image, stimulation sites in the specimen to be irradiated with a laser beam serving as a stimulation beam by the stimulation optical system at a plurality of different positions in the optical axis direction. The LCOS-SLM modulates the laser beam such that the stimulation sites are irradiated with the laser beam.