Abstract:
There is provided a method comprising providing configuration information to a user device to allow the user device to operate using a first feedback mode for at least one first resource of a set of resources and providing configuration information to the user device to allow the user device to operate using a second feedback mode for the rest of the set of resources, such that the user device is capable of operating using both the first feedback mode and the second feedback mode for the set of resources.
Abstract:
Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence, and performing an iterative manipulation of the input sequence. The performing of the iterative manipulation of the input sequence may include, for example: computing frequency domain response of the sequence, normalizing elements of the computed frequency domain sequence to unitary power while maintaining phase of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained.
Abstract:
An apparatus and a method is provided, by which data is sent to and/or received from a first network control node and at least one second network control node by a carrier aggregation, uplink scheduling information is established and sending of the uplink scheduling information is managed individually for the first network control node and the at least one second network control node.
Abstract:
The present disclosure relates to techniques for adaptively controlling and optimizing radio configuration parameters by using a dual control algorithm. The dual control algorithm includes first and second control algorithms, each of which is executed independently whenever certain one or more trigger events occur. The first control algorithm is used for obtaining one or more User Equipment (UE) clusters and a Key Performance Indicator (KPI) requirement for each UE cluster based on UE information, while the second control algorithm is used for obtaining optimized radio configuration parameters for each UE cluster in accordance with the KPI requirement. The second control algorithm is also configured to monitor its performance and, if its performance degrades, send an associated signal to the first control algorithm. The occurrence of such a signal is among the trigger events that cause the execution of the first control algorithm.
Abstract:
A method for use in a user equipment, including transferring data to the base station of a first cell (A1); sending an uplink scheduling request to the base station of a second cell (A3) in dependence on the condition that the user equipment has sufficient transmission power for performing inter-site carrier aggregation (A2); receiving an uplink resource allocation message from the base station of the second cell (A5) if the load of the second cell satisfies predetermined conditions (A4); transferring data to the base stations of the first and second cells via carrier aggregation (A6).
Abstract:
A technique is provided for allocating resources based on a communications mode. The technique may include receiving, by a user device from a base station in a wireless network, information indicating a communications mode to be used to receive a data retransmission, and receiving, by the user device based on the communications mode, a data retransmission that includes control information and retransmitted data, wherein a portion of resources allocated for the control information is based on the communications mode.
Abstract:
An example technique is provided for receiving, by a target base station (BS) from a source PS, information identifying a source cell or the source BS, and a first time advance value used by the user device to transmit signals to the source BS, receiving a signal by the target BS that was transmitted from the user device based on the first tune advance value, determining, by the target BS based upon the first time advance value and the received signal from the user device, a second time advance value to be used by the user device to transmit data to the target BS, sending the second time advance value from the target BS to the source BS, receiving, by the target BS, a handover of the user device from the source BS to the target BS, and receiving data by the target BS from the user device based on the second time advance value.
Abstract:
A technique includes making a decision to perform a handover of a user device from a source cell to a target cell at a scheduled handover time, determining, by a source base station associated with the source cell, an estimated data rate for transmitting data from the source cell to the user device between a time of the handover decision and the scheduled handover time, determining, based on the estimated data rate and a difference between the time of the handover decision and the scheduled handover time, a portion of data stored in a data buffer associated with the source cell for the user device to be forwarded to the target cell before the scheduled handover time, and forwarding, from the source cell to the target cell before the scheduled handover time, the portion of data stored in the data buffer for the user device.
Abstract:
The present invention provides methods, apparatuses and computer program product relating to guaranteed periods of inactivity for network listening modes. The present invention includes configuring a measurement configuration message, the measurement configuration message including measurement gap information, and transmitting the measurement configuration message to at least two user equipments connected to the base station, wherein the measurement gap information included in the measurement configuration message is the same for each of the at least two user equipments.
Abstract:
There is provided a method comprising: obtaining, by an apparatus, a first data block, a second data block and a third data block; generating a first signal, wherein a first part of the first signal is generated based on a data of the first data block, and wherein a second part of the first signal is generated based on a data of the second data block, the second part being subsequent in time domain compared with the first part; generating a second signal, wherein a first part of the second signal is generated based on a data of the third data block, and wherein a second part of the second signal is generated based on the data of the second data block, the second part being subsequent in time domain compared with the first part; and transmitting the first and second signals.