Abstract:
The radiator device which radiates heat generated by electronic components mounted on a printed board, and the plug-in unit which the radiator device is equipped to is provided in order to reliably absorb errors in height among various electronic components while realizing a high heat radiation efficiency. The device and the plug-in unit includes: a radiating board which is connected to an electronic component side of a printed board mounted with one or more electronic components thereon, with a specific space between the radiating board and the printed board; a heat conductive block which is connected to a side of the radiating board that faces the printed board in such a manner that the position of the heat conductive block is adjustable along a direction crossing the printed board, the heat conductive block making intimate contact with an electronic component mounted on the printed board.
Abstract:
There are provided: an isolation protruding upward from a semiconductor substrate in an active region; a gate electrode formed in the active region; and a pair of dummy electrodes formed to extend over the active region and the isolation and substantially in parallel with the gate electrode. Each of the gate electrode and dummy electrodes is composed of a lower film and an upper film. The lower films of the dummy electrodes are formed flush with the isolation and in contact with the side edges of the isolation. With the dummy electrodes, any gate electrode can be formed in a line-and-space pattern, so that the finished sizes of the gate electrode become uniform. This enables a reduction in gate length and therefore provides a semiconductor device of higher integration which is operable at a higher speed and substantially free from variations in finished size resulting from the use of different gate patterns.
Abstract:
An apparatus on which a fan can be mounted, including a casing; a plurality of cooling fan units arranged in line on a lower portion of the casing and capable of being inserted into and removed from the casing on an individual basis; and a plurality of plate members disposed above the line in which the cooling fan units are arranged and above a gap between the cooling fan units, the plate members extending in a direction to which an upper surface of each of the cooling fan units is substantially perpendicular and in which the cooling fan unit is inserted into and removed from the casing, wherein each of the plate members is supported so as to be able to pivot about its lower end portion toward both directions.
Abstract:
A plug-in unit includes: a printed circuit board on which a connector is mounted; and a cover in which the printed circuit board is accommodated; wherein the cover allows the connector to be exposed when the plug-in unit is inserted into a housing and to be covered when the plug-in unit is in a standalone state in which the plug-in unit is not inserted into the housing.
Abstract:
A heat sink includes a radiator fin for dissipating heat of an electronic device provided on a printed board; a plurality of radiator fins included in the heat sink is formed in an arbitrary diameter size; and the radiator fins are connected to each other by inserting a pair of fastening screws through a through hole provided on each of the radiator fins, and a tip end of the fastening screws is screwed and fastened to a screw hole of a base heat sink fixed on the upper surface of an electronic device.
Abstract:
An antibacterial polyamide filament which comprises a polyamide resin containing 0.1 to 5.0 mass % of fine zinc oxide particles and exhibits a color difference caused by the treatment with an alkaline solution of 2.5 or less; and a method for producing the antibacterial polyamide filament which comprises adjusting the moisture content of a polyamide resin chip to 0.05 to 2.0 mass %, followed by melt spinning. Preferably, the antibacterial polyamide filament has a bacteriostatic activity after 50 washings of 2.2 or more, which filament can be produced by melt-spinning the polyamide resin to melt spinning and solidifying the resin at a position 400 mm or less from the face of a spinning nozzle.
Abstract:
There are provided: an isolation protruding upward from a semiconductor substrate in an active region; a gate electrode formed in the active region; and a pair of dummy electrodes formed to extend over the active region and the isolation and substantially in parallel with the gate electrode. Each of the gate electrode and dummy electrodes is composed of a lower film and an upper film. The lower films of the dummy electrodes are formed flush with the isolation and in contact with the side edges of the isolation. With the dummy electrodes, any gate electrode can be formed in a line-and-space pattern, so that the finished sizes of the gate electrode become uniform. This enables a reduction in gate length and therefore provides a semiconductor device of higher integration which is operable at a higher speed and substantially free from variations in finished size resulting from the use of different gate patterns.
Abstract:
Reusable pressurized containers are disclosed for dispensing fluids from the container without release of the pressurized propellant to the surrounding environment. The propellant is contained in a sealed, flexible compartment positioned within the container as a mixture of gas and liquid under pressure in equilibrium at the temperature of the container. A pressure transfer liquid, such as water or compressed air, is used to liquefy the propellant in the compartment. The pressure transfer fluid also contacts the fluid or semi-solid to be dispensed and exerts pressure thereon to force the fluid to be dispensed out of the container. The liquefied propellant, as it vaporizes, maintains the pressure against the pressure transfer fluid essentially constant. The propellant in the flexible compartment is preferably a mixture of a liquefiable propellant gas or blend thereof and a non-liquefiable inert gas such as nitrogen or helium.