Abstract:
One video encoding method includes: performing a first part of a video encoding operation by a software engine with instructions, wherein the first part of the video encoding operation comprises at least a motion estimation function; delivering a motion estimation result generated by the motion estimation function to a hardware engine; and performing a second part of the video encoding operation by the hardware engine. Another video encoding method includes: performing a first part of a video encoding operation by a software engine with instructions and a cache buffer; performing a second part of the video encoding operation by a hardware engine; performing data transfer between the software engine and the hardware engine through the cache buffer; and performing address synchronization to ensure that a same entry of the cache buffer is correctly addressed and accessed by both of the software engine and the hardware engine.
Abstract:
An image compression method includes at least the following steps: receiving a plurality of pixels of a frame, wherein pixel data of each pixel has a plurality of color channel data corresponding to a plurality of different color channels, respectively; encoding the pixel data of each pixel and generating bit-streams corresponding to the plurality of color channel data of the pixel, wherein the bit-streams corresponding to the plurality of color channel data of the pixel are separated; packing bit-streams of a same color channel data of different pixels into color channel bit-stream segments, wherein each of the bit-stream segments has a same predetermined size; and concatenating color channel bit-stream segments of the different color channels into a final bit-stream. Alternatively, color channel bit-stream segments of the same pixel are concatenated into a concatenated bit-stream portion, and concatenated bit-stream portions of different pixels are concatenated into a final bit-stream.
Abstract:
An encoding method is used for encoding an image. The image includes a plurality of blocks each having a plurality of pixels. The encoding method includes: encoding a plurality of data partitions of block data of a block in the image to generate a plurality of compressed bitstream segments, respectively; and combining the compressed bitstream segments to generate an output bitstream of the block. A bit group based interleaving process is involved in generating the output bitstream. According to the bit group based interleaving process, each of the compressed bitstream segments is divided into a plurality of bit groups each having at least one bit, and the output bitstream includes consecutive bit groups belonging to different compressed bitstream segments, respectively.
Abstract:
A method and apparatus of sharing an on-chip buffer or cache memory for a video coding system using coding modes including Inter prediction mode or Intra Block Copy (IntraBC) mode are disclosed. At least partial pre-deblocking reconstructed video data of a current picture is stored in an on-chip buffer or cache memory. If the current block is coded using IntraBC mode, the pre-deblocking reconstructed video data of the current picture stored in the on-chip buffer or cache memory are used to derive IntraBC prediction for the current block. In some embodiments, if the current block is coded using Inter prediction mode, Inter reference video data from the previous picture stored in the on-chip buffer or cache memory are used to derive Inter prediction for the current block. In another embodiment, the motion compensation/motion estimation unit is shared by the two modes.
Abstract:
A perception-based image processing apparatus includes an image analyzing circuit and an application circuit. The image analyzing circuit obtains training data, sets a perception model according to the training data, performs an object detection of at least one frame, and generates an object detection information signal based at least partly on a result of the object detection of said at least one frame. The application circuit operates in response to the object detection information signal.
Abstract:
A method and system for encoding a group of coding blocks and packetizing the compressed data into slices/packets with hard-limited packet size are disclosed. According to the present invention, a packetization map for at least a portion of a current picture is determined. The packetization map associates coding blocks in at least a portion of the current picture with one or more packets by identifying a corresponding group of coding blocks for each packet of said one or more packets. The corresponding group of coding blocks for each packet is then encoded according to the packetization map and the size of each packet is determined. The packet size is checked. If any packet size exceeds a constrained size, a new packetization map is generated and the corresponding group of coding blocks for each packet is encoded according to the new packetization map.
Abstract:
A video encoder has a processing circuit and a universal binary entropy (UBE) syntax encoder. The processing circuit processes pixel data of a video frame to generate encoding-related data, wherein the encoding-related data comprise at least quantized transform coefficients. The UBE syntax encoder processes a plurality of syntax elements to generate UBE syntax data. The encoding-related data are represented by the syntax elements. The processing circuit operates according to a video coding standard. The video coding standard supports arithmetic encoding. The UBE syntax data contain no arithmetic-encoded syntax data.
Abstract:
An image encoding method for encoding an image includes following steps: determining a coding mode selected from a plurality of candidate coding modes for a current coding block, wherein the current coding block included in the image comprises a plurality of pixels; and encoding the current coding block into a part of a bitstream according to at least the determined coding mode. The step of encoding the current coding includes: determining a first predictor presented in a first color space according to a plurality of reconstructed pixels presented in the first color space; transforming the first predictor presented in the first color space to a second predictor presented in a second color space different from the first color space; and encoding the current coding block under the second color space according to at least the second predictor.
Abstract:
A method of binarizing an input symbol using a hybrid Truncated Rice/k-th order exp-Golomb binarization scheme with a Rice Parameter includes: determining a threshold; comparing the input symbol with the threshold; constructing a codeword using a Truncated Rice (TR) binarization process for the input symbol when a comparison result belongs to a first type of comparison result; and constructing a codeword with an initial prefix and a suffix for the input symbol when the comparison result belongs to a second type of comparison result; wherein the suffix is constructed using an exp-Golomb binarization process.
Abstract:
An image encoding method with rate control includes at least the following steps: defining a plurality of candidate bit budgets corresponding to different pre-defined maximum encoded bit lengths for one coding unit respectively; when encoding pixel data of a plurality of pixels within a current coding unit of an access unit of a frame, determining a target bit budget selected from the candidate bit budgets and allocating the target bit budget to the current coding unit; and outputting encoded pixel data of the pixels within the current coding unit that is generated from the encoder, wherein a bit length of the encoded pixel data is smaller than or equal to the target bit budget.