Abstract:
An antenna system for a portable wireless communication device is provided having a first antenna and a second antenna, the first and second antennas being proximally located causing electromagnetic coupling therebetween. An isolator is coupled with the first and second antennas and the first and second RF transceivers at respective interface ports. The isolator Comprises a radio frequency (RF) coupler featuring four RF coupler ports. The four RF coupler ports are coupled to respective phasor-shaping networks at each of the four RF coupler ports. The first and second RF transceivers operate independently in respective frequency bands.
Abstract:
An antenna (100) enables improved multi-band operation for a portable communication device, such as a portable two-way radio. The antenna structure is formed of a first radiator element (104) fed through a single radio frequency (RF) feed port (118) and terminated on the input of a transmission line (108). The transmission line (108) is routed along a ground plane reference mass (102) towards a second radiator element (106). Applying the antenna structure to a radio embodiment, the first radiator element (104) is placed at a bottom side of a portable radio device, the first radiator element being fed through the single RF feed port and terminated on the input of the transmission line. The transmission line is routed along the ground plane reference mass towards the second radiator element placed on a top side of the portable radio.
Abstract:
A system including a base affixed to a radio. The base includes a first base connector and a second base connector with a plurality of radial interconnectors positioned around the perimeter of the first base connector. The system includes an antenna connector including a first antenna connector and a second antenna connector with a plurality of radial interconnectors positioned around the perimeter of the first antenna connector. The first base connector is connected to the first antenna connector to form a central radio frequency (RF) coaxial connection and a first transmission line for a first antenna. The second antenna connector is connected to the second base connector to form a second transmission line and a plurality of radial connections around the perimeter of the central RF coaxial connection. The plurality of radial connections is configured to function as a signal carrier and/or an additional RF element.
Abstract:
A short, efficient antenna utilizing a floating coax transmission line over ground or overlapping wire feed structure for reduced antenna size for use in handheld radios. An asymmetric transmission line radiator having a length (LTL) is oriented substantially planar to and proximal to a truncated ground plane, and having at one end an input/output connector, and at an other end a feed point at least one of above a ground plane and proximal to its edge. An exciter antenna in a form of a plate or bent wire is coupled to the feed point and is exterior to the edge of the ground plane and oriented substantially orthogonal to the ground plane, the exciter antenna having a larger dimension length (LEA) that is at least 50% smaller than the length LTL. The overall length of a perimeter of the antenna is approximately ½ a wavelength of a center frequency of the antenna.
Abstract:
A method, a system, and a server provide context aware multiple-input-multiple-output MIMO antenna systems and methods. Specifically, the systems and methods provide, in a multiple MIMO antenna or node system, techniques of antenna/beam selection, calibration, and periodic refresh, based on environmental and mission context. The systems and methods can define a context vector as built by cooperative use of the nodes on the backhaul to direct antennas for the best user experience as well as mechanisms using the context vector in a 3D employment to point the antennas in a cooperative basis therebetween. The systems and methods utilize sensors in the nodes to provide tailored context sensing versus motion sensing, in conjunction with BER (Bit Error Rate) measurements on test signals to position an antenna beam from a selection of several “independent” antenna subsystems operating within a single node, as well as, that of its optically connected neighbor.