Abstract:
A capacitance difference detecting circuit with a control circuit, a first capacitor, a second capacitor, a voltage control unit and a computing device. The control circuit generates a control signal according to a first voltage and a second voltage. The voltage control unit cooperates with the first capacitor to be detected and the second capacitor to be detected, according to the control signal, to generate the first voltage and the second voltage. The computing device computes a capacitance difference between the first capacitor to be detected and the second capacitor to be detected according to the first voltage, the second voltage and a parameter of the voltage control unit.
Abstract:
A capacitance difference detecting circuit, which comprises: a control circuit, for generating a control signal according to a first voltage and a second voltage; a first capacitor to be detected; a second capacitor to be detected; a voltage control unit, for cooperating with the first capacitor to be detected and the second capacitor to be detected, according to the control signal, to generate the first voltage and the second voltage; and a computing device, for computing a capacitance difference between the first capacitor to be detected and the second capacitor to be detected according to the first voltage, the second voltage and a parameter of the voltage control unit.
Abstract:
In one aspect of the present invention, a photovoltaic module includes a plurality of sub-modules. Each sub-module includes a plurality of photovoltaic cells spatially arranged as an array, each cell having first and second conductive layers sandwiching an active layer therebetween. The cells in each sub-module are electrically connected to each other in series. Each sub-module further includes positive and negative electrodes formed on the second conductive layers of the first and last cells, respectively, in a respective sub-module. The positive electrode of each sub-module is electrically connected to each other and the negative electrode of each sub-module is electrically connected to each other such that the plurality of sub-modules is electrically connected in parallel. The plurality of sub-modules is spatially arranged next to each other as an array such that at least one sub-module is spatially separated from its immediately next sub-module by a gap.
Abstract:
A capacitance difference detecting circuit, which comprises: a control circuit, for generating a control signal according to a first voltage and a second voltage; a first capacitor to be detected; a second capacitor to be detected; a first constant capacitor, having a terminal coupled to the first terminal of the first capacitor to be detected and the first input terminal; a second constant capacitor, having a terminal coupled to the first terminal of the second capacitor to be detected and the second input terminal; a voltage control unit, cooperating with the first capacitor to be detected, the second capacitor to be detected, the first constant capacitor and the second constant capacitor to control the first voltage and the second voltage. The voltage control unit is an adjustable capacitor and a capacitance value of the adjustable capacitor is controlled by the control signal.
Abstract:
A forming method of the present invention includes forming a first patterned conductive layer, which includes a transparent conductive layer and a metal layer stacked together on a substrate, where the first patterned conductive layer functions as gate lines, gate electrodes, common lines and predetermined transparent pixel electrode structures; and forming a second patterned conductive layer on the substrate. The second patterned conductive layer includes data lines and reflective pixel electrodes, and be directly connected to doping regions, such as source regions/drain regions. According to the forming method of the present invention, pixel structures of a transflective liquid crystal display device can be formed through five mask processes. Therefore, the manufacturing process of the transflective liquid crystal display device is effectively simplified, so the product yield is improved and the cost can be reduced.
Abstract:
A semiconductor device and the method for fabricating the same are disclosed. The fabrication method includes forming a PMOS device and an NMOS device on a substrate, wherein the PMOS device includes a first poly-silicon island, a gate dielectric layer covering the first poly-silicon island, and a first gate on the gate dielectric layer. The method of fabrication the PMOS device includes performing a P-type ion implantation process on the first poly-silicon island to form a plurality of P-type heavily doped regions and a plurality of P-type lightly doped regions. The length of the channel region is substantially less than 3 micron, and the length of at least one of the P-type lightly doped regions substantially is 10%-80% of the length of the channel region. The P-type lightly doped regions are used to improve the short channel effect of the PMOS device.
Abstract:
A manufacturing method of a thin film transistor array substrate incorporating the manufacture of a photo-sensor is provided. In the manufacturing method, a photo-sensing dielectric layer is formed between a transparent conductive layer and a metal electrode for detecting ambient light. Since the transparent conductive layer is adopted as an electrode, the ambient light can pass through the transparent conductive layer and get incident light into the photo-sensing dielectric layer. Therefore, the sensing area of the photo-sensor can be enlarged and the photo-sensing efficiency is improved. In addition, the other side of the photo sensitive dielectric layer may be a metal electrode. The metal electrode can block the backlight from getting incident into the photo-sensing dielectric layer and thus reduce the background noise. A manufacturing method of a liquid crystal display panel adopting the aforementioned thin film transistor array substrate is also provided.
Abstract:
A pixel structure including at least one thin-film transistor, at least one storage capacitor, a patterned first metal layer, an interlayer dielectric layer, a passivation layer, and a patterned pixel electrode is provided. The storage capacitor is electrically connected to the thin-film transistor. The patterned first metal layer is covered by the interlayer dielectric layer. The thin-film transistor and the interlayer dielectric layer are covered by the passivation layer, wherein an opening is formed in the passivation layer and a part of the interlayer dielectric layer. The patterned pixel electrode is formed on a part of the passivation layer and a part of the interlayer dielectric layer and contacted with a part of the passivation layer and a part of the interlayer dielectric layer. The storage capacitor includes the patterned first metal layer, a remained part of the interlayer dielectric layer located under the opening, and the patterned pixel electrode.
Abstract:
A method of forming an optical sensor includes the following steps. A substrate is provided, and a read-out device is formed on the substrate. a first electrode electrically connected to the read-out device is formed on the substrate. a photosensitive silicon-rich dielectric layer is formed on the first electrode, wherein the photosensitive silicon-rich dielectric layer comprises a plurality of nanocrystalline silicon crystals. A second electrode is formed on the photosensitive silicon-rich dielectric layer.
Abstract:
An optical reflective touch panel and pixels and a system thereof are provided. Each pixel of the optical reflective touch panel includes a display circuit and a sensing circuit. The display circuit controls the display of the pixel. The sensing circuit is coupled to the display circuit for sensing a sensitization state of the pixel during a turned-on period and a turned-off period of a backlight module and outputting a digital signal to notify an optical reflective touch panel system that whether the pixel is touched or not.