Abstract:
Disclosed are an electronic device and an operating method thereof. The electronic device and operating method are configured to detect the number for splitting one piece of content and allowing a plurality of edge nodes to split and store at least some of packets split from the content based on the number. Detecting the number may be performed based on an average amount of storage of the edge nodes for the content.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting a content using a cache memory, and a method for transmitting, by a relay node, a content using a cache memory according to the present invention may comprise the steps of: storing a first content, received from a serving cell, in the cache memory; storing a second content, received from an adjacent cell or the serving cell, in the cache memory; selecting a content to be transmitted to a user equipment (UE) from among the first content requested by the UE and the second content which acts as interference to the first content; and transmitting the second content to the UE.
Abstract:
A receiver for transferring energy and data together and a signal processing method in the receiver are provided. The method includes decoding data included in a received signal using part of power received for charging a charging unit of the receiver with energy with respect to the signal for energy charging and data decoding, the signal being received from a transmitter.
Abstract:
An apparatus is configured to perform a method for providing a wireless communication service to at least one User Equipment (UE) from among a plurality of UEs having links established with a distributed small Base Station (BS) in a Virtual Cell Network (VCN) system in which a plurality of virtual cells exist within one macro cell. The method includes selecting at least one UE to which a wireless communication service is to be provided in a virtual cell, calculating a feedback allocation amount for each of the selected at least one UE, by sharing path losses and user characteristics measured and determined on a UE basis by each of the plurality of virtual cells, and providing information about the calculated feedback allocation amount to the selected at least one UE.
Abstract:
Provided is a method and apparatus for multi-antenna transmission to minimize a charging time of users in a wireless powered communication network. A power transmission apparatus may be configured to generate a covariance matrix to minimize a charging time of the power reception apparatus based on an amount of energy required by at least one power reception apparatus; to derive a beamforming vector using the covariance matrix; and to transmit a wireless power to the power reception apparatus based on the beamforming vector.
Abstract:
Disclosed in the present application is a method for a terminal receiving data in a wireless communication system. Specifically, the method comprises the steps of determining at least one transmission subject for the data among one or more auxiliary nodes and a base station; receiving a distributed code from the determined at least one transmission subject; and obtaining the data from the distributed code, wherein the at least one transmission subject is determined based on the sum of the distributed codes stored in the auxiliary nodes and the number of auxiliary nodes existing within a predetermined distance from the terminal.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as a Long Term Evolution (LTE). A method for controlling interference in a signal transmitting apparatus in a mobile communication system is provided. The method includes transmitting data to a first signal receiving apparatus using a plurality of channels; receiving information indicating whether at least one of the plurality of channels exists as an interference channel in a second signal receiving apparatus from the second signal receiving apparatus; receiving interference control information for controlling interference for the second signal receiving apparatus from the second signal receiving apparatus based on the received information, and generating interference control data based on the interference control information; and transmitting the interference control data to the first signal receiving apparatus.
Abstract:
A method for operating a base station in a wireless communication system is provided. In the method, feedback is received from at least one terminal. When the base station configures terminal allocation information, a terminal that the base station is to service is determined based on information included in the feedback. A combination of base stations allowing the determined terminal to obtain maximal performance is determined with consideration of the information included in the feedback and a gain of cooperation between base stations.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method of transmitting feedback information by a receiving apparatus in a wireless communication system supporting a multiple input multiple output (MIMO) scheme is provided. The method includes transmitting, to a transmitting apparatus, an antenna group identifier (ID) of one or more antenna groups used by the transmitting apparatus and feedback information including information related to channel quality which the receiving apparatus is capable of acquiring if the one or more antenna groups are used, wherein each of the antenna groups includes one or more antennas.
Abstract:
An apparatus is configured to perform a method for providing a wireless communication service to at least one User Equipment (UE) from among a plurality of UEs having links established with a distributed small Base Station (BS) in a Virtual Cell Network (VCN) system in which a plurality of virtual cells exist within one macro cell. The method includes selecting at least one UE to which a wireless communication service is to be provided in a virtual cell, calculating a feedback allocation amount for each of the selected at least one UE, by sharing path losses and user characteristics measured and determined on a UE basis by each of the plurality of virtual cells, and providing information about the calculated feedback allocation amount to the selected at least one UE.