Abstract:
A magnetic head includes a main magnetic pole, a trailing shield that forms a magnetic circuit with the main magnetic pole, a spin torque oscillator that is provided between the main magnetic pole and the trailing shield, a first cooling layer that partially has a Heusler structure, and a second cooling layer that is provided on the first cooling layer and mainly comprised of silver. The first cooling layer and the second cooling layer are provided either between the main magnetic pole and spin torque oscillator or between the trailing shield and the spin torque oscillator, with either of the two cooling layers being disposed closer to the spin torque oscillator. A third cooling layer may be formed to be in contact with the first cooling layer.
Abstract:
According to one embodiment, a magnetic head includes a main pole configured to apply a recording magnetic field to a recording layer of a recording medium, a return pole opposed to the main pole with a write gap therebetween, and a high-frequency oscillator between respective facing surfaces of the main pole and the return pole and configured to produce a high-frequency magnetic field. At least one of the main and return poles faces the high-frequency oscillator and includes a laminated structure portion includes a magnetic layer and a nonmagnetic layer laminated to one another.
Abstract:
According to one embodiment, a magnetic recording head includes a disk-facing surface configured to face a recording layer of a recording medium, a main magnetic pole includes a distal end located on the disk-facing surface and configured to apply a recording magnetic field to the recording layer of the recording medium, a leading shield on a leading side of the main magnetic pole, opposed to the distal end of the main magnetic pole across a gap, a high-frequency oscillator between the leading shield and the distal end of the main magnetic pole, and a recording coil configured to excite the main magnetic pole with a magnetic field.
Abstract:
A magnetic recording head includes a main magnetic pole extending to an air bearing surface of the magnetic recording head and having an end portion that is exposed at the air bearing surface, a magnetic shield having an end portion that is exposed at the air bearing surface and faces the end portion of the main magnetic pole with a gap therebetween, a stacked-layer element disposed in the gap, and including a first conductive layer in contact the main magnetic pole, a second conductive layer in contact with the magnetic shield, and an magnetic permeability adjusting layer disposed between the first conductive layer and the second conductive layer, and first and second terminals between which a current flows through the main magnetic pole, the stacked-layer element, and the magnetic shield when the current is supplied to one of the terminals.
Abstract:
According to one embodiment, a nonvolatile memory includes a conductive line including a first portion, a second portion and a third portion therebetween, a storage element including a first magnetic layer, a second magnetic layer and a nonmagnetic layer therebetween, and the first magnetic layer being connected to the third portion, and a circuit flowing a write current between the first and second portions, applying a first potential to the second magnetic layer, and blocking the write current flowing between the first and second portions after changing the second magnetic layer from the first potential to a second potential.
Abstract:
A magnetic recording head includes a main magnetic pole in which a recording magnetic field is generated, a write shield magnetic pole disposed alongside the main magnetic pole with a gap therebetween, a spin torque oscillator disposed within the gap and configured to generate a microwave, an anti-ferromagnetic layer disposed within the gap between the write shield magnetic pole and the spin torque oscillator, and a non-magnetic metal layer disposed within the gap between the spin torque oscillator and the anti-ferromagnetic layer.
Abstract:
According to one embodiment, a magnetic head includes a main pole configured to apply a recording magnetic field to a recording layer included in a recording medium, a trailing shield opposing the main pole in a down-track direction, with a write gap interposed therebetween, a pair of side shields opposing the main pole on opposite sides of the main pole in a cross-track direction, with respective gaps interposed therebetween, a recording coil configured to cause the main pole to generate a magnetic field, a first high-frequency oscillator interposed between the main pole and one of the side shields, and a second high-frequency oscillator interposed between the main pole and the other side shield.
Abstract:
According to one embodiment, an oscillation layer of a spin torque oscillator for use in a magnetic head includes a stack of first and second metal films. The first metal film is formed by repetitively stacking a combination of first and second magnetic layers twice or more. The thickness of the first metal film is 0.4 to 5.0 nm. The first magnetic layer has a bcc structure and contains Fe. The second magnetic layer contains Co. The second metal film is made of Cu.
Abstract:
According to one embodiment, a magnetic recording head manufacturing method includes forming a spin torque oscillator layer on a main magnetic pole layer, forming a mask on the spin torque oscillator layer, processing the spin torque oscillator layer by performing ion beam etching through the mask, and partially modifying the main magnetic pole layer through the mask. The partially modifying the main magnetic pole layer makes it possible to decrease the saturation flux density of the main magnetic pole layer in the modified portion, and form an unmodified main magnetic pole portion covered with the mask, and a modified portion around the main magnetic pole.
Abstract:
According to one embodiment, a magnetic recording head includes a main magnetic pole, an auxiliary magnetic pole, and a spin torque oscillator formed between them. The spin torque oscillator includes a main oscillation layer and spin sink layer as an oscillation layer. The spin sink layer contains one of iron and cobalt, and at least one element selected from the group consisting of platinum, palladium, ruthenium, tantalum, chromium, terbium, gadolinium, europium, dysprosium, and samarium.