Abstract:
For example, an EDMG STA may be configured to receive an A-MPDU for the EDMG STA in an EDMG MU PPDU from an EDMG MU-MIMO initiator station; to determine, according to an ordered acknowledgement scheme, a Block Acknowledgement (BA) period in which the EDMG STA is to be awake to allow transmission of a BA from the EDMG STA to the EDMG MU-MIMO initiator STA; to allow the EDMG STA to be in a power save mode during a first power save period from a time of an End of Frame (EOF) field in the A-MPDU for the EDMG STA until a beginning of the BA period; to transmit the BA to the EDMG MU-MIMO initiator; and to allow the EDMG STA to be in the power save mode during a second power save period after transmission of the BA.
Abstract:
For example, an EDMG STA may be configured to receive an A-MPDU for the EDMG STA in an EDMG MU PPDU from an EDMG MU-MIMO initiator station; to determine, according to an ordered acknowledgement scheme, a Block Acknowledgement (BA) period in which the EDMG STA is to be awake to allow transmission of a BA from the EDMG STA to the EDMG MU-MIMO initiator STA; to allow the EDMG STA to be in a power save mode during a first power save period from a time of an End of Frame (EOF) field in the A-MPDU for the EDMG STA until a beginning of the BA period; to transmit the BA to the EDMG MU-MIMO initiator; and to allow the EDMG STA to be in the power save mode during a second power save period after transmission of the BA.
Abstract:
This disclosure describes systems, methods, and devices related to a time division duplex (TDD) antenna sector switch. A device may determine one or more antenna sector configurations based on TDD beamforming, wherein the one or more antenna sector configurations are associated with first antenna sectors used to communicate with a first station device (STA). The device may initiate a TDD sector switch with the first STA to switch from the one or more first antenna sectors to one or more second antenna sectors. The device may cause to send, to the first STA, an action frame comprising TDD sector setting parameters associated with the TDD sector switch. The device may identify a response frame received from the first STA, wherein the response frame comprises the TDD sector setting parameters. The device may perform the TDD sector switch by switching from the one or more first antenna sectors to the one or more second antenna sectors.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of power management in a wireless network. For example, a first wireless station may be configured to transmit a frame to a second wireless station during a first beacon interval, the frame including an indication that the first wireless station is to switch to a low power mode; switch to the low power mode; operate at an active mode during an awake window in a second beacon interval subsequent to the first beacon interval; and upon receipt of an announcement traffic indication message (ATIM) from the second wireless station during the awake window, transmit an acknowledgement to the second wireless station, and stay at the active mode to communicate data with the second wireless station.
Abstract:
Described herein are methods and devices to provide support for a hidden SSID in an 802.11ad or directional multi-gigabit (DMG) wireless network. An access point (AP) of the DMG network may be configured to explicitly signal the hidden SSID configuration by sending probe responses that signal the hidden SSID configuration and/or signaling the hidden SSID configuration in DMG beacons transmitted by the AP.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of power management in a wireless network. For example, a first wireless station may be configured to transmit a frame to a second wireless station during a first beacon interval, the frame including an indication that the first wireless station is to switch to a low power mode; switch to the low power mode; operate at an active mode during an awake window in a second beacon interval subsequent to the first beacon interval; and upon receipt of an announcement traffic indication message (ATIM) from the second wireless station during the awake window, transmit an acknowledgement to the second wireless station, and stay at the active mode to communicate data with the second wireless station.
Abstract:
For example, a first STA may be configured to transmit to a second STA a message including a first value to indicate an available memory size at the first STA at a beginning of a TXOP, and a second value to indicate a maximal length of an A-MPDU transmission during the TXOP; to receive an initial A-MPDU from the second STA during the TXOP, a length of the initial A-MPDU is not longer than the first value; to determine a capacity value based on a current available memory size at the first STA, the capacity value to indicate whether the second STA is to be allowed to send to the first STA a subsequent A-MPDU having a length which is not longer than the second value; and to transmit to the second STA an Ack including a buffer capacity field including the capacity value.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating a Single-User (SU) Multiple-Input-Multiple-Output (MIMO) transmission. For example, a first wireless communication station may be configured to transmit a Request to Send (RTS) to a second wireless communication station via a plurality of SU MIMO Transmit (Tx) sectors of the first wireless communication station, the RTS to establish a Transmit Opportunity (TXOP) to transmit an SU-MIMO transmission to the second wireless communication station, a control trailer of the RTS including an indication of an intent to transmit the SU-MIMO transmission to the second wireless communication station; and to transmit the SU-MIMO transmission to the second wireless communication station, upon receipt of a Clear to Send (CTS) from the second wireless communication station indicating that the second wireless communication station is ready to receive the SU-MIMO transmission.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating a Single-User (SU) Multiple-Input-Multiple-Output (MIMO) transmission. For example, a first wireless communication station may be configured to transmit a Request to Send (RTS) to a second wireless communication station via a plurality of SU MIMO Transmit (Tx) sectors of the first wireless communication station, the RTS to establish a Transmit Opportunity (TXOP) to transmit an SU-MIMO transmission to the second wireless communication station, a control trailer of the RTS including an indication of an intent to transmit the SU-MIMO transmission to the second wireless communication station; and to transmit the SU-MIMO transmission to the second wireless communication station, upon receipt of a Clear to Send (CTS) from the second wireless communication station indicating that the second wireless communication station is ready to receive the SU-MIMO transmission.
Abstract:
Embodiments of an enhanced directional multi-gigabit (EDMG) station (STA), access point (AP), and method of communication are generally described herein. The EDMG STA may receive, from the AP, a Link Measurement Request Frame that includes a request for information for time division duplexing (TDD) rate adaptation. The EDMG STA may transmit a Link Measurement Response Frame that includes a Directional Multi Gigabit (DMG) Link Margin element that includes a Rate Adaption Control parameter. The DMG Link Margin element may be configurable to include one or more optional fields for the TDD rate adaptation and transmit power control. The Rate Adaptation Control parameter may indicate: a number of space time streams (STSs) for which information is included in the DMG Link Margin element; and whether the DMG Link Margin element includes the one or more optional fields.