Abstract:
A multi-chip device is provided. The multi-chip device includes a first chip, a second chip mounted on the first chip, and a hardened printed or sprayed electrically conductive material forming a sintered electrically conductive interface between the first chip and the second chip.
Abstract:
A method for forming a semiconductor device includes forming device regions in a semiconductor substrate having a first side and a second side. The device regions are formed adjacent the first side. The method further includes forming a seed layer over the first side of the semiconductor substrate, and forming a patterned resist layer over the seed layer. A contact pad is formed over the seed layer within the patterned resist layer. The method further includes removing the patterned resist layer after forming the contact pad to expose a portion of the seed layer underlying the patterned resist layer, and forming a protective layer over the exposed portion of the seed layer.
Abstract:
A method of manufacturing a wafer. The method includes providing a wafer that includes a plurality of semiconductor device structures, and testing at least one of the plurality of semiconductor device structures. Based on a test result, a substance is provided on a selected portion of the wafer to selectively configure a circuit element within the at least one of the plurality of semiconductor device structures.
Abstract:
A device comprises a base element and a metallization layer over the base element. The metallization layer comprises pores and has a varying degree of porosity, the degree of porosity being higher in a portion adjacent to the base element than in a portion remote from the base element.
Abstract:
In accordance with an alternative embodiment of the present invention, a method for forming a semiconductor device includes applying a paste over a semiconductor substrate, and forming a ceramic carrier by solidifying the paste. The semiconductor substrate is thinned using the ceramic carrier as a carrier.
Abstract:
According to various embodiments, a semiconductor device may include: a contact pad; a metal clip disposed over the contact pad; and a porous metal layer disposed between the metal clip and the contact pad, the porous metal layer connecting the metal clip and the contact pad with each other.
Abstract:
A die includes a plurality of dielectric landings and a conductive material distributed across one or more of the plurality of dielectric landings. Each one of the plurality of dielectric landings electrically separates two conductive landings associated with the one of the plurality of dielectric landings. The conductive material establishes an electrical connection between the two conductive landings associated with the one or more of the plurality of dielectric landings.
Abstract:
A method of manufacturing a wafer. The method includes providing a wafer and testing the wafer. Based on a test result, a substance is selectively provided on the wafer to obtain an altered wafer that has at least one selected portion altered. The method includes forming a structural layer over the altered wafer.
Abstract:
A method for use in manufacturing a plurality of electronic devices from a workpiece. The method includes compiling a set of data records in a data file, wherein each data record represents information uniquely associated with a respective electronic device to be manufactured from the workpiece. Based on the data file, deposition of a substance is controlled at selected locations on the workpiece.
Abstract:
According to various embodiments, a semiconductor device may include: a contact pad; a metal clip disposed over the contact pad; and a porous metal layer disposed between the metal clip and the contact pad, the porous metal layer connecting the metal clip and the contact pad with each other.