Abstract:
A guided wave radar level measurement device includes a process connection composed of an outer conductor and a central conductor. The central conductor is surrounded at least in part by a dielectric material. One or more resilient metal seals can be employed to form a hermetic seal around a portion of the probe. The metal seal protects the dielectric material such that the hermetic seal is isolated from process and temperature shock. The metal seal(s) can be further mated with one or more insulators and one or more gaskets, the metal seal(s) to provide a thermal and mechanical barrier as well as offering chemical resistance to the guided wave radar level measurement apparatus.
Abstract:
A coaxial fluid level sensor can be easily assembled and maintained with a minimum of required tooling by using U-shaped spacers to center an inner rod within an outer shell. The U-shaped spacers can be snapped onto the inner rod before or as the inner rod is inserted into the outer shell. The sensor can be extended by attaching additional inner rods and outer shells end to end.
Abstract:
A method and system for seal failure annunciation comprises a process connector connected to a probe used to measure a product level in a tank. A pulse generation module generates a pulse that is propagated through a voided space in the process connector and a detector module configured to receive the echo curve from the interrogation pulse. A logic module is used to evaluate the received echo curve to determine if a seal in the process connector has failed. When the logic module indicates seal failure, an alarm module initiates an alarm indicating said seal in said process connector has failed.
Abstract:
A coaxial guided wave radar apparatus includes a central conductor configured as a wire rope. One or more spacers can be positioned and held in place about the central conductor at predetermined lengths along the central conductor, wherein each spacer is positioned and held in place along the central conductor by one or more respective retainers that are crimped to the central conductor. A tensioner can be attached to the end of the wire rope of the central conductor. The tensioner allows for a proper tension to be applied to maintain a spacing of the wire rope from an outer conductor.
Abstract:
A guided wave radar level measurement device includes a process connection composed of an outer conductor and a central conductor. The central conductor is surrounded at least in part by a dielectric material. One or more resilient metal seals can be employed to form a hermetic seal around a portion of the probe. The metal seal protects the dielectric material such that the hermetic seal is isolated from process and temperature shock. The metal seal(s) can be further mated with one or more insulators and one or more gaskets, the metal seal(s) to provide a thermal and mechanical barrier as well as offering chemical resistance to the guided wave radar level measurement apparatus.
Abstract:
A method and system for seal failure annunciation comprises a process connector connected to a probe used to measure a product level in a tank. A pulse generation module generates a pulse that is propagated through a voided space in the process connector and a detector module configured to receive the echo curve from the interrogation pulse. A logic module is used to evaluate the received echo curve to determine if a seal in the process connector has failed. When the logic module indicates seal failure, an alarm module initiates an alarm indicating said seal in said process connector has failed.
Abstract:
Coaxial probes for guided wave radar level transmitters have an inner rod within an outer tube. Transmission line impedance changes where the space between the two fills with process fluid, causing a reflection of radar energy. Time of flight calculations yield the distance to the product and thus the level of the fluid in a tank. The inner rod and outer rod should maintain their spacing because a reflection can occur if the inner rod moves too close to the outer tube wall. Spacers can maintain the spacing. The spacers should be retained so that their location over time doesn't change. Retention strategies involving shoulders or discontinuities in the inner rod or outer tube can cause measurement errors. Applications requiring high temperature resistance and high chemical compatibility lead to ceramic spacers instead of plastic spacers. Slip fits are needed when ceramics are too stiff for snap-in functionality.
Abstract:
Coaxial probes for guided wave radar level transmitters have an inner rod within an outer tube. Transmission line impedance changes where the space between the two fills with process fluid, causing a reflection of radar energy. Time of flight calculations yield the distance to the product and thus the level of the fluid in a tank. The inner rod and outer rod should maintain their spacing because a reflection can occur if the inner rod moves too close to the outer tube wall. Spacers can maintain the spacing. The spacers should be retained so that their location over time doesn't change. Retention strategies involving shoulders or discontinuities in the inner rod or outer tube can cause measurement errors. Applications requiring high temperature resistance and high chemical compatibility lead to ceramic spacers instead of plastic spacers. Slip fits are needed when ceramics are too stiff for snap-in functionality.
Abstract:
A coaxial feed-through device (feed-through) for coupling a received process connection to a storage tank (tank) including an inner electrical conductor (probe), an outer electrical conductor; and a dielectric sleeve disposed between the probe and the outer electrical conductor. The dielectric sleeve is configured to provide an upper coaxial transmission line segment (upper CTL segment) providing a substantially 50 ohm impedance and a lower coaxial transmission line segment (lower CTL segment) which includes one or more sub-segments having an impedance that is at least forty (40%) percent higher as compared to the substantially 50 ohm impedance.