Abstract:
Aspects of the disclosure relate generally to detecting road weather conditions. Vehicle sensors including a laser, precipitation sensors, and/or camera may be used to detect information such as the brightness of the road, variations in the brightness of the road, brightness of the world, current precipitation, as well as the detected height of the road. Information received from other sources such as networked based weather information (forecasts, radar, precipitation reports, etc.) may also be considered. The combination of the received and detected information may be used to estimate the probability of precipitation such as water, snow or ice in the roadway. This information may then be used to maneuver an autonomous vehicle (for steering, accelerating, or braking) or identify dangerous situations.
Abstract:
Example methods and systems for detecting weather conditions using vehicle onboard sensors are provided. An example method includes receiving laser data collected for an environment of a vehicle, and the laser data includes a plurality of laser data points. The method also includes associating, by a computing device, laser data points of the plurality of laser data points with one or more objects in the environment, and determining given laser data points of the plurality of laser data points that are unassociated with the one or more objects in the environment as being representative of an untracked object. The method also includes based on one or more untracked objects being determined, identifying by the computing device an indication of a weather condition of the environment.
Abstract:
A system and method of displaying transitions between street level images is provided. In one aspect, the system and method creates a plurality of polygons that are both textured with images from a 2D street level image and associated with 3D positions, where the 3D positions correspond with the 3D positions of the objects contained in the image. These polygons, in turn, are rendered from different perspectives to convey the appearance of moving among the objects contained in the original image.
Abstract:
A system and method include scanning a light detection and ranging (LIDAR) device through a range of orientations corresponding to a scanning zone while emitting light pulses from the LIDAR device. The method also includes receiving returning light pulses corresponding to the light pulses emitted from the LIDAR device and determining initial point cloud data based on time delays between emitting the light pulses and receiving the corresponding returning light pulses and the orientations of the LIDAR device. The initial point cloud data has an initial angular resolution. The method includes identifying, based on the initial point cloud data, a reflective feature in the scanning zone and determining an enhancement region and an enhanced angular resolution for a subsequent scan to provide a higher spatial resolution in at least a portion of subsequent point cloud data from the subsequent scan corresponding to the reflective feature.
Abstract:
Methods and systems for generating video from panoramic images using transition trees are provided. According to an embodiment, a method for generating a video from panoramic images may include receiving a transition tree corresponding to a current panoramic image from a server. The method may also include determining a path of the transition tree to a next panoramic image based on a user navigation request. The method may further include requesting and receiving a video chunk from the server for each edge of the determined path of the transition tree. The method may also include displaying the requested video chunks in sequence according to the transition tree. According to another embodiment, a system for generating a video from panoramic images may include a transition tree module and a video display module.
Abstract:
Methods and systems for object detection using multiple sensors are described herein. In an example embodiment, a vehicle's computing device may receive sensor data frames indicative of an environment at different rates from multiple sensors. Based on a first frame from a first sensor indicative of the environment at a first time period and a portion of a first frame that corresponds to the first time period from a second sensor, the computing device may estimate parameters of objects in the vehicle's environment. The computing device may modify the parameters in response to receiving subsequent frames or subsequent portions of frame of sensor data from the sensors even if the frames arrive at the computing device out of order. The computing device may provide the parameters of the objects to systems of the vehicle for object detection and obstacle avoidance.
Abstract:
Methods and systems for object detection using multiple sensors are described herein. In an example embodiment, a vehicle's computing device may receive sensor data frames indicative of an environment at different rates from multiple sensors. Based on a first frame from a first sensor indicative of the environment at a first time period and a portion of a first frame that corresponds to the first time period from a second sensor, the computing device may estimate parameters of objects in the vehicle's environment. The computing device may modify the parameters in response to receiving subsequent frames or subsequent portions of frame of sensor data from the sensors even if the frames arrive at the computing device out of order. The computing device may provide the parameters of the objects to systems of the vehicle for object detection and obstacle avoidance.
Abstract:
Methods and systems for detecting hand signals of a cyclist by an autonomous vehicle are described. An example method may involve a computing device receiving a plurality of data points corresponding to an environment of an autonomous vehicle. The computing device may then determine one or more subsets of data points from the plurality of data points indicative of at least a body region of a cyclist. Further, based on an output of a comparison of the one or more subsets with one or more predetermined sets of cycling signals, the computing device may determine an expected adjustment of one or more of a speed of the cyclist and a direction of movement of the cyclist. Still further, based on the expected adjustment, the computing device may provide instructions to adjust one or more of a speed of the autonomous vehicle and a direction of movement of the autonomous vehicle.
Abstract:
Example methods and systems for detecting weather conditions using vehicle onboard sensors are provided. An example method includes receiving laser data collected for an environment of a vehicle, and the laser data includes a plurality of laser data points. The method also includes associating, by a computing device, laser data points of the plurality of laser data points with one or more objects in the environment, and determining given laser data points of the plurality of laser data points that are unassociated with the one or more objects in the environment as being representative of an untracked object. The method also includes based on one or more untracked objects being determined, identifying by the computing device an indication of a weather condition of the environment.
Abstract:
A computing device may identify an object in an environment of a vehicle and receive a first three-dimensional (3D) point cloud depicting a first view of the object. The computing device may determine a reference point on the object in the first 3D point cloud, and receive a second 3D point cloud depicting a second view of the object. The computing device may determine a transformation between the first view and the second view, and estimate a projection of the reference point from the first view relative to the second view based on the transformation so as to trace the reference point from the first view to the second view. The computing device may determine one or more motion characteristics of the object based on the projection of the reference point.