Abstract:
Methods and systems for detecting weather conditions including fog using vehicle onboard sensors are provided. An example method includes receiving laser data collected from scans of an environment of a vehicle, and associating, by a computing device, laser data points of with one or more objects in the environment. The method also includes comparing laser data points that are unassociated with the one or more objects in the environment with stored laser data points representative of a pattern due to fog, and based on the comparison, identifying by the computing device an indication that a weather condition of the environment of the vehicle includes fog.
Abstract:
Methods and systems for detecting weather conditions including sunlight using onboard vehicle sensors are described. In one example, a method is provided that includes receiving laser data collected for an environment of a vehicle. The method also includes associating laser data points with one or more objects in the environment, and determining given laser data points that are unassociated with the one or more objects in the environment as being representative of an untracked object at a given position with respect to the vehicle. The method also includes determining that the untracked object remains at a substantially same relative position with respect to the vehicle as the vehicle moves, and identifying by the computing device an indication that a weather condition of the environment of the vehicle is sunny.
Abstract:
Methods and systems for detecting weather conditions including fog using vehicle onboard sensors are provided. An example method includes receiving laser data collected from scans of an environment of a vehicle, and associating, by a computing device, laser data points of with one or more objects in the environment. The method also includes comparing laser data points that are unassociated with the one or more objects in the environment with stored laser data points representative of a pattern due to fog, and based on the comparison, identifying by the computing device an indication that a weather condition of the environment of the vehicle includes fog.
Abstract:
Methods and systems for detecting weather conditions including sunlight using onboard vehicle sensors are described. In one example, a method is provided that includes receiving laser data collected for an environment of a vehicle. The method also includes associating laser data points with one or more objects in the environment, and determining given laser data points that are unassociated with the one or more objects in the environment as being representative of an untracked object at a given position with respect to the vehicle. The method also includes determining that the untracked object remains at a substantially same relative position with respect to the vehicle as the vehicle moves, and identifying by the computing device an indication that a weather condition of the environment of the vehicle is sunny.
Abstract:
Methods and systems for detecting weather conditions including fog using vehicle onboard sensors are provided. An example method includes receiving laser data collected from scans of an environment of a vehicle, and associating, by a computing device, laser data points of with one or more objects in the environment. The method also includes comparing laser data points that are unassociated with the one or more objects in the environment with stored laser data points representative of a pattern due to fog, and based on the comparison, identifying by the computing device an indication that a weather condition of the environment of the vehicle includes fog.
Abstract:
Example methods and systems for detecting weather conditions using vehicle onboard sensors are provided. An example method includes receiving laser data collected for an environment of a vehicle, and the laser data includes a plurality of laser data points. The method also includes associating, by a computing device, laser data points of the plurality of laser data points with one or more objects in the environment, and determining given laser data points of the plurality of laser data points that are unassociated with the one or more objects in the environment as being representative of an untracked object. The method also includes based on one or more untracked objects being determined, identifying by the computing device an indication of a weather condition of the environment.
Abstract:
An autonomous vehicle is configured to detect an active turn signal indicator on another vehicle. An image-capture device of the autonomous vehicle captures an image of a field of view of the autonomous vehicle. The autonomous vehicle captures the image with a short exposure to emphasize objects having brightness above a threshold. Additionally, a bounding area for a second vehicle located within the image is determined. The autonomous vehicle identifies a group of pixels within the bounding area based on a first color of the group of pixels. The autonomous vehicle also calculates an oscillation of an intensity of the group of pixels. Based on the oscillation of the intensity, the autonomous vehicle determines a likelihood that the second vehicle has a first active turn signal. Additionally, the autonomous vehicle is controlled based at least on the likelihood that the second vehicle has a first active turn signal.
Abstract:
A vehicle configured to operate in an autonomous mode may engage in a reverse-parallax analysis that includes a vehicle system detecting an object, capturing via a camera located at a first location a first image of the detected object, retrieving location data specifying (i) a location of a target object, (ii) the first location, and (iii) a direction of the camera, and based on the location data and the position of the detected object in the first image, predicting where in a second image captured from a second location the detected object would appear if the detected object is the target object.
Abstract:
Methods and systems for predictive reasoning for controlling speed of a vehicle are described. A computing device may be configured to identify a first and second vehicle travelling ahead of an autonomous vehicle and in a same lane as the autonomous vehicle. The computing device may also be configured to determine a first buffer distance behind the first vehicle at which the autonomous vehicle will substantially reach a speed of the first vehicle and a second buffer distance behind the second vehicle at which the first vehicle will substantially reach a speed of the second vehicle. The computing device may further be configured to determine a distance at which to adjust a speed of the autonomous vehicle based on the first and second buffer distances and the speed of the autonomous vehicle, and then provide instructions to adjust the speed of the autonomous vehicle based on the distance.
Abstract:
Methods and systems for predictive reasoning for controlling speed of a vehicle are described. A computing device may be configured to identify a first and second vehicle travelling ahead of an autonomous vehicle and in a same lane as the autonomous vehicle. The computing device may also be configured to determine a first buffer distance behind the first vehicle at which the autonomous vehicle will substantially reach a speed of the first vehicle and a second buffer distance behind the second vehicle at which the first vehicle will substantially reach a speed of the second vehicle. The computing device may further be configured to determine a distance at which to adjust a speed of the autonomous vehicle based on the first and second buffer distances and the speed of the autonomous vehicle, and then provide instructions to adjust the speed of the autonomous vehicle based on the distance.