Abstract:
Methods for selective localized coating deposition for a turbine component include providing the turbine component comprising an exterior surface with one or more surface features and selectively coating at least a portion of the exterior surface using a localized coating deposition apparatus based on a location of at least one of the one or more surface features.
Abstract:
A turbine component patch delivery system can include a support arm and a deposition tool supported by the support arm. The deposition tool can include a reservoir configured to house a turbine component patch material and a dispenser configured to dispense the turbine component patch material from the reservoir onto a surface of a turbine component.
Abstract:
A method for modifying an aperture in a component, a system for modifying flow through a component, and a turbine component are disclosed. The method includes providing a substrate having at least one aperture having an electrically-conductive surface, providing a deposition device including an ESD torch, the ESD torch including an aperture penetrating electrode including a conductive material, inserting the aperture penetrating electrode at least partially into the aperture, and generating an arc between the aperture penetrating electrode and the electrically-conductive surface to deposit electrode material within the aperture. The system includes the ESD torch removably supported in an electrode holder. The turbine component includes at least one aperture having an electrospark deposited material along an electrically-conductive surface, the electrospark deposited material providing modified fluid flow through the turbine component.
Abstract:
A method for modifying an aperture in a component, a system for modifying flow through a component, and a turbine component are disclosed. The method includes providing a substrate having at least one aperture having an electrically-conductive surface, providing a deposition device including an ESD torch, the ESD torch including an aperture penetrating electrode including a conductive material, inserting the aperture penetrating electrode at least partially into the aperture, and generating an arc between the aperture penetrating electrode and the electrically-conductive surface to deposit electrode material within the aperture. The system includes the ESD torch removably supported in an electrode holder. The turbine component includes at least one aperture having an electrospark deposited material along an electrically-conductive surface, the electrospark deposited material providing modified fluid flow through the turbine component.
Abstract:
Various embodiments include a turbomachine diaphragm ring. In various particular embodiments, a turbomachine diaphragm ring includes: a packing slot sized to house a dovetail section of a turbomachine packing, the packing slot extending circumferentially about a rotational axis of the turbomachine; a key slot connected with the packing slot sized to house a portion of a key member, the key slot extending at least one of radially or axially from the packing slot; and a retaining slot connected with the key slot and extending substantially circumferentially from the key slot, the retaining slot sized to house a retaining member for retaining the key member.
Abstract:
Turbine component coating processes include applying a malleable masking material to one or more apertures of one or more fluid flow passages within a turbine component surface and then applying a first coating over the malleable masking material and on the turbine component surface. The turbine component coating processes further include locally applying a local masking material to the one or more apertures of the one or more fluid flow passages and then applying a second coating over the local masking material and on the first coating.
Abstract:
A repair method is provided and includes deriving, from a model of a component, drilling vectors respectively associated with fluid flow passages of the component, obtaining location data of each of the fluid flow passages at least partially from a source other than the model and relying upon the derived drilling vectors and the obtained location data of each of the fluid flow passages to position a tool configured to modify each of the fluid flow passages.