Abstract:
A position tracking system includes one or more beacon transmitters and one or more beacon receiver systems configured to be disposed on an object. Each of the one or more beacon receiver systems includes one or more photodetectors configured to receive signals from the one or more beacon transmitters, and an analog-to-digital convertor to convert analog signals received by the one or more photodetectors to digital signals. Each of the one or more beacon receiver systems also includes a memory and a processor configured to execute instructions stored on the memory. The instructions includes receiving signals collected by the one or more photodetectors, converting the received signals to digital signals, and processing the digital signals.
Abstract:
A power converter is provided. The power converter includes a first phase including a first upper diode and a first lower diode, a second phase including a second upper diode and a second lower diode, a third phase including a third upper diode and a third lower diode, a plurality of MOSFETs, each of the first upper diode, the first lower diode, the second upper diode, the second lower diode, the third upper diode, and the third lower diode electrically connected in parallel with a respective one of the plurality of MOSFETs, and a control system configured to selectively activate each MOSFET when current flows through a diode electrically coupled in parallel with that MOSFET.
Abstract:
Processes for commissioning an indoor lighting system composed of a plurality of lighting fixtures, each including a lighting associate, include the steps of establishing a direct connection table for each lighting associate; forming a full direct connection table represented as a square matrix and comprising data derived from all direct connection tables; grouping the lighting associates using an element reduction operation on the square matrix; and transmitting a group direct connection matrix to each lighting associate. The lighting fixtures may include a first transmitter for transmitting a first message to a second lighting associate; a first receiver for receiving a second message from the second lighting associate; a second transmitter for transmitting a third message via a lighting associate support network; a second receiver for receiving a fourth message via the lighting associate support network; an interval timer; a microcontroller in communication with the interval timer, programmable to execute a networking and communication algorithm to process the first, second, third, and fourth messages; an LED lamp; and a switch between the lamp and a power line, controllable by the microcontroller.
Abstract:
A method for navigating within a retail establishment includes: generating and distributing an encoded identity to each of a plurality of location beacons, the encoded identity being effective during a time interval; broadcasting the encoded identity from each of the plurality of location beacons to a user device within a retail establishment; mapping the encoded identity of each of the plurality of location beacons to a location thereof; generating a masked mapping by combining the mapping with a time interval mask; storing the masked mapping in a website accessible to the user device; and broadcasting an srw signal to the user device within the retail establishment, the srw signal comprising information for recovering the mapping from the masked mapping in the web site; whereby navigation via the location beacons is enabled.
Abstract:
An electronic device includes a multi-functional optical sensor configured to couple to one or more light sources within a space. The multi-functional optical sensor is configured to detect occupancy of the space, ambient light within the space, and visible light communication (VLC) signals optically communicated in the space.
Abstract:
A method for operating illumination sources includes receiving a first set of images of one or more illumination sources that are generated by an image capturing device. The method further includes computing a first distance and a first perspective angle between the image capturing device and each illumination source during the generation of the first set of images. Furthermore, the method includes generating first characteristic information for each illumination source based on a comparison between at least one of the first distance or the first perspective angle for each illumination source with at least one of a predefined distance or a predefined perspective angle for each illumination source. The method also includes generating a command signal based on a comparison between the first characteristic information and a predefined characteristic threshold for each of the one or more illumination sources.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, automatic, and dynamic frequency selection for and/or by medical body area network apparatus are disclosed. Certain examples provide a medical body area network apparatus. The example apparatus includes a radio to receive a beacon signal and a processor to process the beacon signal to determine a location of the apparatus. The example processor is configured to at least: when the beacon signal indicates a first location, communicate via a first frequency band; and when the beacon signal indicates a second location, communicate via a second frequency band.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, automatic, and dynamic frequency selection for and/or by medical body area network apparatus are disclosed. Certain examples provide a medical body area network apparatus. The example apparatus includes a radio to receive a beacon signal and a processor to process the beacon signal to determine a location of the apparatus. The example processor is configured to at least: when the beacon signal indicates a first location, communicate via a first frequency band; and when the beacon signal indicates a second location, communicate via a second frequency band.
Abstract:
A position tracking system includes one or more beacon transmitters and one or more beacon receiver systems configured to be disposed on an object. Each of the one or more beacon receiver systems includes one or more photodetectors configured to receive signals from the one or more beacon transmitters, and an analog-to-digital convertor to convert analog signals received by the one or more photodetectors to digital signals. Each of the one or more beacon receiver systems also includes a memory and a processor configured to execute instructions stored on the memory. The instructions includes receiving signals collected by the one or more photodetectors, converting the received signals to digital signals, and processing the digital signals.
Abstract:
A beacon location system includes a plurality of first broadcasters configured to broadcast first broadcasts to be received by a registered receiver device, and includes one or more second broadcasters configured to broadcast second broadcasts to be received by the registered receiver device. The beacon location system includes a controller communicatively and operatively coupled to the plurality of first broadcasters, and the one or more second broadcasters, wherein the controller comprises a memory and a processor configured to execute instructions stored on the memory. The instructions include generating one or more masked correspondences between the first broadcasts and locations of the plurality of the first broadcasters, wherein the one or more masked correspondences comprise one or more levels of accuracies. The beacon location system also includes a website accessible to the registered receiver device to obtain the one or more masked correspondences.