Abstract:
A rotor blade for a wind turbine includes an internal support structure including a plurality of fixed, spaced support members extending in a chord-wise and span-wise direction and defining a generally aerodynamic contour of the rotor blade. A plurality of the support members have an outer surface with a longitudinally extending slot defined therein. A plurality of fabric strips are attached over the internal support structure in a tensioned state and define an aerodynamic outer skin. The fabric strips extend over and are attached to the support members with a longitudinally extending insert member that presses the fabric strips into the slot and lockingly engages within the slot.
Abstract:
A method for manufacturing a tower structure of a wind turbine includes printing, via an additive printing device, a plurality of concentric sections of the tower structure of the wind turbine. The concentric sections may be printed simultaneously from concrete, may include tensioning cables or other structural supports, and may define other support flanges or overhangs. After curing, the method may include raising an inner section of the plurality of concentric sections to a top of an adjacent outer section and joining the two sections. This process may be repeated to telescope the concentric sections and raise the tower structure.
Abstract:
A thermal structure for management of thermal energy, the thermal structure including: a first wall structure defining a first cavity; a second wall structure defining a second cavity, the second cavity in fluid communication with the first cavity; and a barrier cavity defined at least in-part by the first wall structure and the second wall structure, wherein the barrier cavity is disposed between the first cavity and the second cavity and includes a pressurized barrier fluid therein or is configured to receive the pressurized barrier fluid during operation of the thermal structure.
Abstract:
An additive printing device and a method for using the same to manufacture a tower structure of a wind turbine is provided. The additive printing device includes a vertical support structure, a support ring suspended from the vertical support structure, and a printer head movably coupled to the support ring for selectively depositing cementitious material. A drive mechanism, such as a rack and pinion, moves the printer head around the support ring while selectively depositing cementitious material. The vertical support structure may be raised and/or the relative position between the vertical support structure and the printer head may be adjusted to raise the printer head to print subsequent layers. This process may be repeated to print the tower structure layer-by-layer from the ground up.
Abstract:
An additive printing device and a method for using the same to manufacture a tower structure of a wind turbine is provided. The additive printing device includes a vertical support structure, a support ring suspended from the vertical support structure, and a printer head movably coupled to the support ring for selectively depositing cementitious material. A drive mechanism, such as a rack and pinion, moves the printer head around the support ring while selectively depositing cementitious material. The vertical support structure may be raised and/or the relative position between the vertical support structure and the printer head may be adjusted to raise the printer head to print subsequent layers. This process may be repeated to print the tower structure layer-by-layer from the ground up.
Abstract:
A wind turbine system includes a wind turbine generator having a rotor and a nacelle mounted atop a tower structure. The tower structure is mounted to a foundation structure and includes a plurality of tower sections, each including one or more tower section flanges. The wind turbine system further includes one or more connector rings. Each of the one or more connector rings is disposed proximate two adjacent tower section flanges and includes a plurality of pad eye adaptors each having an opening formed therein. The wind turbine system further includes a plurality of tensioned cables, with each coupled to one of the pad eye adaptors at a first end and the foundation structure at a second end. The plurality of tensioned cables are coupled to the tower structure at different or multiple connector ring heights based on site conditions to yield the desired lateral stability.
Abstract:
A system for reducing vibration in a wind turbine includes a mass structure having at least one hole extending therethrough; a rod having a top threaded portion, an upper level stop disposed on or below the threaded portion, and a fixed lower level stop disposed below the upper level stop. The mass structure has a designed weight and shape that, in combination with the adjustable axial distance between the upper level stop and the lower level stop, is designed to provide a properly tuned system for a particular frequency. A base having an aperture designed for receipt of the lower level stop therein is configured for attachment to a component of the wind turbine.
Abstract:
A sealing assembly is provided. The sealing assembly includes a foil disposed circumferentially around a rotating component and configured to provide primary sealing to the rotating component between high pressure and low pressure sides and a spring system disposed adjacent to the foil. The spring system includes a plurality of features to facilitate foil surface to follow excursions of the rotating component, wherein the plurality of features provide secondary sealing from the high pressure to the low pressure sides between the foil and a stationary component.
Abstract:
A method for manufacturing a tower structure, the method including printing and depositing, with at least one variable-width deposition nozzle of a printhead assembly, one or more layers of at least one wall element of the tower structure, the at least one wall element having an outer circumferential surface and an inner circumferential surface. The method also including forming, with the at least one variable-width deposition nozzle, at least one void into the at least one wall element. The method also including placing at least one reinforcement member within the at least one void so as to position the at least one reinforcement member closer to a neutral axis of the at least one wall element than at least one of the outer circumferential surface or the inner circumferential surface.
Abstract:
Example split valves for regulating a first flowrate and a second flowrate of a fluid within a closed loop systems are disclosed herein. An example split valve includes an electrohydraulic servo valve coupled to a first piston via a first hydraulic flowline and a second hydraulic flowline, the first piston to include a piston shaft, a first head, and a second head, the first hydraulic flowline to output a first pressure of a hydraulic fluid, the second hydraulic flowline to output a second pressure of the hydraulic fluid, a bellows fixed to at least one of the first head or the second head, the bellows to hermetically seal the fluid from the hydraulic fluid, and a control system connected to the electrohydraulic servo valve, the control system to adjust the first flowrate and the second flowrate of the fluid through a first fluid chamber.