Abstract:
The present disclosure provides various aspects for mobile and automated processing utilizing additive manufacturing. The present disclosure includes methods for the utilization of mobile and automated processing apparatus. In some examples, the mobile additive manufacturing apparatus may perform surface treatments that alter the topography of an existing surface. Other examples may involve the processing of dimensionally large layers which may be joined together to create large pieces with three dimensional shape.
Abstract:
The present invention provides various aspects for processing multiple types of substrates within cleanspace fabricators or for processing multiple or single types of substrates in multiple types of cleanspace environments. In some embodiments, a collocated composite cleanspace fabricator may be capable of processing semiconductor devices into integrated circuits and then performing assembly operations to result in product in packaged form. Customized smart devices, smart phones and touchscreen devices may be fabricated in examples of a cleanspace fabricator. In some examples, the smart devices, smart phones and touchscreen devices may have two touchscreens on opposite sides of the device along with hardware based encryption.
Abstract:
This invention discloses methods and apparatus for providing a media insert with an energy source to an ophthalmic lens. The energy source is capable of powering a component included within the ophthalmic lens. In some embodiments, an ophthalmic lens is cast molded from a silicone hydrogel and the component includes an electro-optical lens portion.
Abstract:
This invention discloses a device comprising multiple functional layers formed on substrates, wherein at least one functional layer comprises an electrical energy source. In some embodiments, the present invention includes an insert for incorporation into ophthalmic lenses that has been formed by the stacking of multiple functionalized layers.
Abstract:
The present invention provides apparatus for an imaging system comprising a multitude of imaging elements upon a substrate. In some embodiments the substrate may be approximately round with a radius of approximately one inch. Various methods relating to using and producing an imaging system are discussed.
Abstract:
This invention discloses methods and apparatus for providing a media insert with an energy source to an ophthalmic lens. The energy source is capable of powering a component included within the ophthalmic lens. In some embodiments, an ophthalmic lens is cast molded from a silicone hydrogel and the component includes an electro-optical lens portion.
Abstract:
The present invention provides various aspects for supporting multilevel fabricators. In some examples, the multilevel fabricators may include a cleanspace region for moving work material. In some examples, panels of filters may be positioned to support the cleanspace. In some embodiments existing processing equipment and automation are placed into the new environment. In other embodiments the processing equipment is placed and new automation equipment is used. Automated tool placement equipment may be used to place the equipment. In some examples, automated tool handling equipment may be used to remove and replace processing equipment into the multilevel fabricator.
Abstract:
The present invention provides methods and apparatus capable of routine placement and replacement of fabricator tools in a designated tool location. The tool location can be selected from multiple tool locations arranged in a matrix with horizontal and vertical designations. The operation may be fully automated. In another aspect, the invention describes Cleanspace fabricators which use devices to routinely remove and place tooling.
Abstract:
This invention discloses methods and apparatus for providing a variable optic insert into an ophthalmic lens. A liquid crystal layer may be used to provide a variable optic function and in some embodiments, an alignment layer for the liquid crystal layer may be patterned in a radially dependent manner. The patterning may allow for the index of refraction of the optic device to vary in a gradient indexed or GRIN manner. At least a first layer of dielectric material that may vary in thickness at least across the optic zone of the device may aid in defining an electric field across the liquid crystal layer. An energy source is capable of powering the variable optic insert included within the ophthalmic lens. In some embodiments, an ophthalmic lens is cast-molded from a silicone hydrogel. The various ophthalmic lens entities may include electroactive liquid crystal layers to electrically control optical characteristics.
Abstract:
This invention discloses various designs for rings that make up the functionalized layers in a functional layer insert. More specifically, design parameters for the rings for incorporation into an ophthalmic lens. Additionally, functional aspects of the rings and materials for encapsulating the functional insert into an area outside the optical zone of the ophthalmic lens.